Masters Thesis Report

“Wireless Local Area Networks – Security & Performance”

Presented By

Yasir Zahur

Committee Members

Dr. Andrew Yang

Dr. Sadegh Davari

Dr. Hisham Al-Mubaid

SCHOOL OF SCIENCE AND COMPUTER ENGINEERING

UNIVERSITY OF HOUSTON – CLEAR LAKE

THESIS REPORT

WIRELESS LAN SECURITY & PERFORMANCE

by

Yasir Zahur

APPROVED BY

__

Andrew Yang, Ph.D., Chair

__

Sadegh Davari, Ph.D., Committee Member

__

Hisham Al Mubaid, Ph.D., Committee Member

__

Robert Ferebee, Ph.D., Associate Dean

__

Charles McKay, Ph.D., Dean

Dedicated To

Table of Contents

1.
Wireless Local Area Networks

 2

1.1
Introduction

 2

1.2
Types of Wireless Networks

 2

1.2.1
Independent Basic Service Set

 2

1.2.2
Basic Service Set

 3

1.2.3
Extended Service Set

 3

1.3
Wireless Networking Standards

 5

1.4
IEEE 802.11b Security Features

 6

1.4.1
SSID – Service Set Identifier

 6

1.4.2
WEP – Wired Equivalent Privacy

 6

1.4.3
MAC Address Filters

 6

2.
Security Vulnerabilities

 7

2.1
General Vulnerabilities

 7

2.1.1
Invasion and Resource Stealing

 7

2.1.2
Traffic Redirection

 8

2.1.3
Denial of Service

 9

2.1.4
Rogue Access Point

 9

2.2
IEEE 802.11b Vulnerabilities

 10

2.2.1
MAC Address Authentication

 10

2.2.2
One – Way Authentication

 11

2.2.3
Static WEP Keys

 12

2.2.4
SSID

 12

2.2.5
WEP Key vulnerabilities

 13

2.2.5.1 Manual Key Management

 13

2.2.5.2 Key Size

 13

2.2.5.3 Initialization Vector

 13

2.2.5.4 Decryption Dictionaries

 14

2.3
IEEE 802.1x Vulnerabilities

 14

2.3.1
IEEE 802.1x Overview

 14

2.3.1.1 Logical Ports

 15

2.3.1.2 Key Management

 15

2.3.2
Association and EAP Authentication

 16

2.3.3
Comparison of 802.11 and 802.11i State Machines
 17

2.3.4
Advantages

 17

2.3.5
Vulnerabilities

 18

2.3.5.1 Absence of Mutual Authentication

 18

2.3.5.2 Session Hijacking

 19

3.
Performance Evaluation

 19

3.1
Client Server Based Java Programs

 19

3.1.1
Server Program

 19

3.1.2
Client Program

 19

3.1.3
Calculations Program

 19

3.2
Issues Faced

 20

3.2.1
Java IO Classes

 21

3.2.2
Time Measurement

 22

3.2.3
Link Status

 24

3.2.4
Conversion Table

 26

3.3
Test Setup

 27

3.3.1
Server Workstation

 27

3.3.1.1 Hardware Configuration

 27

3.3.1.2 Software Configuration

 27

3.3.2
Client Workstation

 28

3.3.2.1 Hardware Configuration

 28

3.3.2.2 Software Configuration

 28

3.3.3
Cisco Aironet Access Point

 29

3.4
Test Data And Results

 29

3.4.1
Definition of Terms

 29

3.4.2
FTS Tests

 29

3.4.2.1 Overview

 29

3.4.2.2 Summary of Results

 29

3.4.3
RTS Tests

 31

3.4.3
WEP Tests

 33

3.4.4.1 Overview

 33

3.4.4.2 Summary of Results

 33

4.
Implementing Secure Socket Layer

 00

4.1
Overview

 00

4.2
SSL Handshake

 00

4.3
Test Setup

 37

4.3.1
Server Workstation

 37

4.3.1.1 Hardware Configuration

 37

3.3.1.2 Software Configuration

 37

4.3.2
Client Workstation

 38

3.3.2.1 Hardware Configuration

 38

3.3.2.2 Software Configuration

 38

4.3.3
Cisco Aironet Access Point

 39

4.4
Performance Analysis

 41

4.5.1
Test Data

 41

4.5.2
Program Execution

 42

4.5.3
Explanation
Of Results

 42

4.5.4
Comparison Of Results

 42

4.5
Security Analysis

 00

4.5.1
Tools Overview

 00

4.5.1.1 WinPCap

 00

4.5.1.2 Snort

 00

4.5.2
Program Execution And Explanation

 00

5.
Implementing Virtual Private Network

 34

5.1
Overview

 34

5.1.1
Point To Point Tunneling Protocol (PPTP)

 35

5.1.2
Microsoft Point To Point Encryption (MPPE)

 36

5.2
Need For VPN In Wireless Networks

 37

5.3
Test Setup

 37

5.3.1
Server Workstation

 37

5.3.1.1 Hardware Configuration

 37

5.3.1.2 Software Configuration

 37

5.3.2
Client Workstation

 38

5.3.2.1 Hardware Configuration

 38

5.3.2.2 Software Configuration

 38

5.3.3
Cisco Aironet Access Point

 39

5.4
Setting Up VPN Connection

 40

5.4.1
Setting Up VPN Server

 40

5.4.2
Setting Up VPN Client

 40

5.4.3
Connecting To VPN Server

 40

5.5
Performance Analysis

 41

5.5.1
Test Data

 41

5.5.2
Explanation

 42

5.6
Security Analysis

 42

Appendix A
Glossary of Terms

 70

Appendix B
Performance Test Data

 72

Appendix C
Research Paper

 90

Appendix D
Setting Up VPN Connection

 97

D.1
Setting Up VPN Server

 97

D.2
Setting Up VPN Client

 102

D.3
Connecting To VPN Server

 107
Appendix E
Source Code Listings

 114
References

 124

List Of Tables

1.1
IEEE WLAN Standards

 00

3.1
Unit Conversion Table

 00

4.1
Test Data For SSL Performance Analysis

 00

5.1
Test Data For VPN Performance Analysis

 00

List Of Figures

1.1
Ad-hoc Mode

 00

1.2
Basic Service Set

 00

1.3
Extended Service Set

 00

2.1
WEP Encryption

 00

2.2
Transmitted Data Frame Using WEP

 00

2.3
EAPOL Frame Format

 00

2.4
IEEE 802.1x in 802.11 WLANs

 00

2.5
EAPOL Exchange

 00

2.6
IEEE 802.11 State Diagram

 00

2.7
IEEE 802.11i (RSN based) State Diagram

 00

2.8
Man-In-Middle Attack Setup

 00

2.9
Session Hijack Attack

 00

3.1
Link Status Before Data Transfer

 00

3.2
Link Status After Data Transfer

 00

3.3
FTS Results Summarized (Download Mode)

 00

3.4
FTS Results Summarized (Upload Mode)

 00

3.5
FTS Results Summarized (Update Mode)

 00

3.6
Results Summarized (WEP Enabled, FTS = RTS = 2312 bytes)
 00

3.7
Results Summarized (WEP Disabled, FTS = RTS = 2312 bytes)
 00

4.1
SSL Handshake

 00

4.2
SSL Test Setup

 00

4.3
Creating Keystore in java

 00

4.4
Sample Run Of SSLClient.java

 00

4.5
Sample Run Of Client.java

 00

4.6
Sample Run Of SSL_Client.java

 00

4.7
Initialization Of Snort Program

 00

4.8
SSL Handshake Process (Snort Screenshot)

 00

4.9
Server Certificate Parameters (Snort Screenshot)

 00

4.10
Encrypted Data (Snort Screenshot)

 00

4.11
Plain Text Data (Snort Screenshot)

 00

5.1
Connection without VPN

 00

5.2
Connection with VPN

 00

5.3
VPN Test Setup

 00

5.4
Network Monitor Tool – Main Window

 00

5.5
Network Monitor Tool – Frame Capture Window

 00

5.6
Garbage Output for Encrypted Frame

 00

5.7
Actual Data for Un-Encrypted Frame

 00

1.
Wireless Local Area Networks

1.1 Introduction

A wireless Local Area Network (WLAN) is analogous to a wired LAN but radio waves being the transport medium instead of traditional wired structures. This allows the users to move around in a limited area while being still connected to the network. Thus, WLANS combine data connectivity with user mobility, and, through simplified configuration, enable movable LANs [1]. In other words WLANS provide all the functionality of wired LANs, but without the physical constraints of the wire itself.

Generally a WLAN (in Infrastructure mode, see below) consists of a central connection point called the Access Point (AP). It is analogous to a hub or a switch in traditional star topology based wired local area networks. The Access Point transmits the data between different nodes of a wireless local area network and in most cases serves as the only link between the WLAN and the wired LAN. A typical Access Point can handle a handsome amount of users within a radius of about 300 feet. The wireless nodes, also called clients of a WLAN usually consist of Desktop PCs, Laptops or PDAs (Personal Digital Assistants) equipped with wireless interface cards.

1.2 Types of Wireless Networks

The 1999 version of the 802.11 standard [2] defines following three types of wireless networks:

1.2.1 Independent Basic Service Set (IBSS)

IBSS (commonly referred to as Ad Hoc Network) is logically comparable to a Peer-to Peer network in case of a wired LAN as shown in Fig.1.1. In case of IBSS different end nodes communicate without any Access Point and thus without any connection to a wired network. It is used to quickly set up a wireless network (to avoid the hidden node problem
) such as for a group meeting or at a convention center or at an airport, etc.

[image: image1.emf]Mobile-AMobile-B

Fig. 1.1 Ad-hoc Mode

1.2.2
Basic Service Set (BSS)

BSS (commonly referred to as an Infrastructure Network) consists of a single Access Point as shown in Fig.1.2. All the communication between any two nodes has to pass through the AP. The coverage area is greatly increased as compared to an IBSS.

[image: image2.jpg]
Fig. 1.2 Basic Service Set
1.2.2 Extended Service Set (ESS)

An ESS consists of multiple BSSs each having a single Access Point. Access Point in each BSS is connected to a distribution system that is usually a Wired Ethernet Network.

 AP

[image: image3.png]
Fig. 1.3 Extended Service Set (ESS)

1.3 Wireless Networking Standards [4]
Institute of Electrical and Electronics Engineers (IEEE) has specified various WLAN standards. Some important standards are summarized below in Table 1.1:

	Standard
	Description
	Current Status

	IEEE 802.11
	Standard for WLAN operations at data rates up to 2 Mbps in the 2.4-GHz ISM band

	Approved in July 1997

	IEEE 802.11a
	Standard for WLAN operations at data rates up to 54 Mbps in the 5-GHz UNII band
	Approved in Sept 1999. End-user products began hipping in early 2002

	IEEE 802.11b
	Standard for WLAN operations at data rates up to 11 Mbps in the 2.4-GHz ISM band

	Sept 1999. End-user products began shipping in early 2000

	IEEE 802.11g
	High-rate extension to 802.11b allowing for

data rates up to 54 Mbps in the 2.4-GHz

ISM band

	Draft standard adopted Nov 2001. Full ratification expected late 2002 or early 2003

	IEEE 802.11e
	Enhance the 802.11 MAC to improve and manage Quality of Service, provide classes of service, and enhanced security and authentication mechanisms. These enhancements should provide the quality required for services such as IP telephony and video streaming

	Still in development, i.e., in the task group (TG) stage

	IEEE 802.11f

	Develop recommended practices for an Inter- access Point Protocol (IAPP) which provides the necessary capabilities to achieve multi-vendor AP interoperability across a DS supporting IEEE P802.11 Wireless LAN Links

	Still in development, i.e., in the task group (TG) stage

	IEEE 802.11i
	Enhance the 802.11 Medium Access Control (MAC) to enhance security and authentication mechanisms

	Still in development, i.e., in the task group (TG) stage

Table 1.1 IEEE WLAN Standards
The purpose of IEEE 802.11i standard is to enhance the 802.11 MAC to enhance security and authentication mechanisms. It defines the encapsulation of EAP IEEE 802.11 WLAN [11]. In other words, IEEE 802.11i uses IEEE 802.1x. Moreover RSN (Robust Security Network” is defined as a main feature in the IEEE 802.11i draft. (Refer to appendix A)

1.3
IEEE 802.11b SECURITY FEATURES

The security features provided in 802.11b standard [2] are as follows:

1.3.1 SSID – Service Set Identifier

SSID acts as a WLAN identifier. Thus all devices trying to connect to a particular WLAN must be configured with the same SSID. It is added to the header of each packet sent over the WLAN (i.e. a BSS) and verified by an Access Point. A client device cannot communicate with an Access Point unless it is configured with the same SSID as the Access Point.

1.3.2
WEP - Wired Equivalent Privacy

According to the 802.11 standard, Wired Equivalent Privacy (WEP) was intended to provide “confidentiality that is subjectively equivalent to the confidentiality of a wired local area network (LAN) medium that does not employ cryptographic techniques to enhance privacy” [5].

IEEE specifications for wired LANs do not include data encryption as a requirement. This is because approximately all of these LANs are secured by physical means such as walled structures and controlled entrance to building etc. However no such physical boundaries can be provided in case of WLANs thus justifying the need for an encryption mechanism.

WEP provides for Symmetric Encryption using the WEP key. Each node has to be manually configured with the same WEP key. The sending station encrypts the message using the WEP key while the receiving station decrypts the message using the same WEP key. WEP uses the RC4 stream cipher.

1.3.3 MAC Address Filters

In this case, the Access Point is configured to accept association and connection requests from only those nodes whose MAC addresses are registered with the Access Point. This scheme provides an additional security layer.

2.
Wireless Local Area Networks

Ubiquitous network access without wires is the main attraction underlying wireless network deployment. Although this seems as enough attraction, there exists other side of the picture. Before going All-Wireless, organizations should first understand how wireless networks could be vulnerable to several types of intrusion methods.

2.1 General Vulnerabilities

2.1.1 Invasion and Resource Stealing

Resources of a network can be various devices like printers and Internet access etc. First the attacker will try to determine the access parameters for that particular network. For example if network uses MAC Address based filtering of clients, all an intruder has to do is to determine MAC address and assigned IP address for a particular client. The intruder will wait till that valid client goes off the network and then he starts using the network and its resources while appearing as a valid user.
2.1.2 Traffic Redirection

An intruder can change the route of the traffic and thus packets destined for a particular computer can be redirected to the attacking station. For example ARP tables (which contain MAC Address to IP Address Mapping) in switches of a wired network can be manipulated in such a way that packets for a particular wired station can be re-routed to the attacking station.
2.1.3 Denial Of Service
Two types of Denial of Service (DOS) attacks against a WLAN can exist. In the first case, the intruder tries to bring the network to its knees by causing excessive interference. An example could be excessive radio interference caused by 2.4 GHz cordless phones or other wireless devices operating at 2.4GHz frequency. A more focused DOS attack would be when an attacking station sends 802.11 disassociate message or an 802.1x EAPOL-logoff message (captured previously) to the target station and effectively disconnects it (Session Hijack).
2.1.4 Rogue Access Point

Rogue Access Point is one that is installed by an attacker (usually in public areas like shared office space, airports etc) to accept traffic from wireless clients to whom it appears as a valid Authenticator. Packets thus captured can be used to extract sensitive information or can be used for further attacks before finally being re-inserted into the proper network.
2.2 IEEE 802.11b Vulnerabilities

The above stated concerns relate to wireless networks in general. The security concerns raised specifically against IEEE 802.11b networks [4] are as following.

2.2.1 MAC Address Authentication

Such sort of authentication establishes the identity of the physical machine, not its human user. Thus an attacker who manages to steal a laptop with a registered MAC address will appear to the network as a legitimate user.

2.2.2 One – Way Authentication

WEP authentication is client centered or one-way only. This means that the client has to prove its identity to the Access Point but not vice versa. Thus a rogue Access Point will successfully authenticate the client station and then subsequently will be able to capture all the packets send by that station through it.

2.2.3 Static WEP Keys

There is no concept of dynamic or per-session WEP keys in 802.11b specification. Moreover the same WEP key has to be manually entered at all the stations in the WLAN.

2.2.4 SSID

Since SSID is usually provided in the message header and is transmitted in clear text format, it provides very little security. It is more of a network identifier than a security feature

2.2.5 WEP Key Vulnerability

WEP key based encryption was included to provide same level of data confidentiality in wireless networks as exists in typical wired networks. However a lot of concerns were raised later regarding the usefulness of WEP. Some of them are as following:

2.2.5.1
Manual Key Management

Keys needed to be entered manually on all the clients and Access Points and also they are changed infrequently.

2.2.5.2 Key Size

The IEEE 802.11 design community blames 40-bit RC4 keys for this and recommends using 104 or 128-bit RC4 keys instead. Although using larger key size does increase the work of an intruder, it does not provide completely secure solution. Many recent research results have proved this notion [6]

2.2.5.3 Initialization Vector

Initialization Vector (IV) is used to avoid encrypting two cipher texts with the same key stream and to produce a different RC4 key for each packet. The secret WEP key is combined with 24-bit IV to create the key. RC4 takes this key as input and generates a key stream equal to the total length of the plain text plus the IV using random number generation. The key stream is then XORed with the plain text and IV to generate cipher text. According to various research publications [6], the vulnerability of WEP roots from its initialization vector and not from its smaller key size. WEP is based on RC4 algorithm, which is a stream cipher algorithm. Two frames that use the same IV almost certainly use the same secret key and key stream. Moreover since the IV space is very small so repetition is guaranteed in busy networks. A busy access point, which constantly sends 1500 byte packets at 11Mbps, will exhaust the space of IVs after 5 hours. Worse, when the same key is used by all mobile stations, there are even more chances of IV collisions [7]

[image: image4.jpg]
Fig. 2.1 WEP Encryption

[image: image5.jpg]
Fig. 2.2 Transmitted Data Frame using WEP

2.2.5.4 Decryption Dictionaries

Infrequent re-keying and frames with same IV result in large collection of frames encrypted with same key streams. These are called decryption dictionaries [8]. Thus even if secret key is not known, more information is gathered about the un-encrypted frames.

2.3 IEEE 802.1x Vulnerabilities

2.3.1
Overview

IEEE 802.1x is a port based authentication protocol. It forms the basis for IEEE 802.11i standard. There are three different types of entities in a typical 802.1x network including a supplicant, an authenticator and an authentication server. To permit the EAP traffic before the authentication succeeds, a dual – port model is used in IEEE 802.1x specifications. In an unauthorized (un-controlled) state, the port allows only DHCP and EAP traffic to pass through. This model also allows backward compatibility with clients incapable of supporting RSN.

When applied to 802.11b, the 802.1x specification includes two main features: (1) logical ports and (2) key management [9]. In the rest of this section we first discuss these two features, followed by a discussions of vulnerabilities unveiled by some researchers.

2.3.1.1 Logical Ports

Since, unlike wired networks, wireless stations are not connected to the network by physical means, they must have some sort of association relation with an Access Point in order to use the WLAN. This association is established by allowing the clients and Access Point to know each other’s MAC address. This combination of MAC address of Access Point and the station acts as a logical port. This then acts as a destination address in EAPOL protocol exchanges.

Extended Authentication Protocol Over LAN (EAPOL) standard is defined for sending EAP messages over IEEE 802.11 based links. EAP message exchanges using EAPOL occurs at Data Link layer i.e. only MAC Addresses are involved. Higher-level protocols like IP have not been instantiated at this stage. EAPOL Frame format is shown in Fig: 2.3

[image: image6.png]

2-byte Type code assigned to EAPOL

Fig. 2.3 EAPOL Frame Format

2.3.1.2 Key Management

IEEE 802.1x specifications do not emphasize on using WEP key for encryption. This is because key information is passed from Access Point to a station using EAPOL-Key message. Thus keys are generated dynamically, per-session basis

Supplicant authenticates with the Authentication Server by using EAPOL to communicate with the Access Point. Messages are exchanged between Supplicant and Authenticator to establish Supplicant’s identity. The Authenticator then transfers Supplicant’s information to the Authentication Server using RADIUS. Authentication Server instantiates authentication mechanism by issuing a challenge message. All communication between Authentication Server and Supplicant passes through Authenticator using EAP over LAN (i.e. EAPOL) and EAP over RADIUS accordingly. This creates an end-to-end EAP conversation between Supplicant and Authentication Server. Once Authentication Server authenticates the Supplicant, the Authenticator delivers key parameters (and not the actual key) to the Supplicant. Typical configuration of WLAN using IEEE 802.1x is shown in Fig. 2.4

[image: image7.jpg]
Fig. 2.4 IEEE 802.1x in 802.11 WLANs

2.3.2
Association & EAP Authentication

[image: image8.png]

Fig. 2.5 EAPOL Exchange

The very last exchange (message# 9) in the above figure is optional. Also the 802.11 association must complete before the 802.1x negotiation begins because the 802.1x state machine requires an active link [8]. However this will occur only through the un-controlled port i.e. for the passage of EAP traffic

2.3.3 Comparison of 802.11 and 802.11i State Machines

Class 1 frames can be transmitted in any state. These include RTS/CTS, Acknowledgment frames, authentication and de-authentication frames and various types of beacons and probing frames.

Class 2 frames can be transmitted only after a station has successfully authenticated i.e. in states 2 and 3. These include association, disassociation and re-association frames.

Class 3 frames can be used only when a station has successfully authenticated and associated. These include disassociation, de-authentication and most of the data frames.
[image: image9.png]
Fig. 2.6 IEEE 802.11 State Diagram

[image: image10.png]
Fig. 2.7 IEEE 802.11i (RSN based) State Diagram

2.3.4 Advantages

· Dynamic Session Key Management: 802.1x allows dynamic session key encryption.

· Open Standards Based: 802.1x leverages existing standards, EAP and RADIUS.

· Centralized User Administration: Since 802.1x supports RADIUS, authentication, authorization and accounting are centralized.

· Low Overhead; 802.1x does not involve encapsulation, so it adds no per-packet overhead.

· User Based Identification
2.3.5 Vulnerabilities

Following are the two vulnerabilities identified in the IEEE 802.1x based wireless networks [10].

2.3.5.1
Absence Of Mutual Authentication [10]

According to 802.1x specifications, a Supplicant always trusts the Authenticator but not vice versa.

[image: image11.jpg]
Fig. 2.8 Man-In-Middle Attack Setup

Consider Fig. 2.5. There is no EAP Request message originating from Supplicant. It only responds to the requests send by the Authenticator. This one-way authentication opens the door for “MAN IN THE MIDDLE ATTACK” as illustrated in Fig. 2.8

Consider EAP-Success message sent from Authenticator to Client (Message# 8 in Fig. 2.5). This message contains no integrity preserving information. An attacker can forge this packet to start the attack.

2.3.5.2
Session Hijacking [9]

Consider Fig. 2.7. It includes a fourth RSN state. With IEEE 802.1x, RSN association has to take place before any higher layer authentication. Thus we have two state machines. One is classic 802.11 and other is 802.1x based RSN state machine. Their combined action should dictate the state of authentication. However a lack of clear communication between these two state machines and message authenticity, “SESSION HIJACKING ATTACK” becomes possible.

[image: image12.png]
Fig. 2.9 Session Hijack Attack

Consider Fig. 2.9. First client authenticates with the Access Point. Then Attacker sends MAC Disassociate message (#4 in Fig. 2.9) using Access Point’s MAC address. The valid supplicant will disassociate. This causes RSN state machine to transfer to Un-Associated State. However, since this Disassociate message was sent by the attacker (impersonating as the real access point), the real access point does not know about it. Thus the 802.11 state machine remains in Authenticated state for that particular client in the real access point. The attacker then gains network access using the MAC address of the authenticated supplicant (which is disassociated by now) because 802.11 state machine in Access Point is still in the authenticated stage.

3.
Performance Evaluation

A series of performance evaluation tests for 802.11b networks were conducted to provide an overview about the performance and throughput aspects of these networks. These tests were performed by varying three parameters; Fragmentation Threshold (FTS), Request To Send (RTS) and Wired Equivalent Privacy (WEP) for different Data sizes. These tests were helpful for comparison purposes later on when Virtual Private Network (VPN) and Secure Socket Layer (SSL) were employed at the WLAN. (Refer to Chapter 4 for these implementations).

The results obtained from these experiments along with results of various other tests were employed to compose a research paper that was co-authored by Dr. Sadegh Davari, Dr. Andrew Yang and Murtaza Doctor. The paper is accepted in ‘Communications, Internet & Information Technology’ (CIIT) 2003 conference at Scottsdale Arizona. The paper is provided in the Appendix C.

The complete set of test data hence obtained is provided in Appendix B. This Chapter will only summarize and evaluate the results obtained.

3.1 Client Server Based Java Programs

Java language was used to create the programs for performance testing. The program used Client and Server Sockets to communicate with each other using Java IO classes.

3.1.1
Server Program

This simulates a server in the real world scenario. Server starts by creating a Server Socket that waits for Client connections. The Server asks for the total number of bytes of data that are to be sent (downloaded) to the client. As soon as a Client sends a connection request, Server creates a Socket to handle the Client. The Server then sends the data as a byte array. After sending data, it waits for the Client to send (upload) the data. This completes single Iteration comprising of data Round Trip. However, the same data is send back to the client to enable the Total Round Trip time to be measured on the Client side. The source code is provided in Appendix E – Listing No 1.

3.1.2
Client Program

This java program provides real world simulation for the Clients downloading some information from the Server, making some updates and then uploading the final information back to the Server. This whole process constitutes a single task.

The Client program should always be executed after the Server program so that there is a Server Socket already created to accept the connection request from the Client. Client then accepts the data from the Server and records the time for the duration of reading this data. The Client creates its own data (same number of bytes as were sent by the Server) and sends it (uploads) to the Server. Client again reads the data from the Server to find out the total time and then calculate the upload time.

In the end three different time calculations are measured including;

Total Update (Round Trip) Time

Total Download Time

Total Upload Time (Difference of above two)

These values are then written to a text file ‘output.txt’. This procedure is repeated for all the 50 test runs (for same data size).

The source code is provided in Appendix E – Listing No 2.

3.1.3
Calculations Program

This program is executed after the Client and the Server have stopped executing. It reads the time measurements from the ‘output.txt’ file and for all the three types of measurements, separately calculates;

· Average Time Value

· Median Time Value

· Maximum Time Value

· Minimum Time Value

The results are displayed accordingly in a JText Area.

The source code is provided in Appendix E – Listing No 3.

3.2 Issues Faced

Various issues encountered during the development and execution of these experiments are as following:

3.2.1 Java IO Classes

I used DataOutputStream class of java’s IO package to send the data. This class doesn’t use the UTF encoding where each character is send as a primitive 8 bit byte and not as 16 bit Unicode character. Since I am interested in finding out the performance in Mega-bits/sec (Mb/s), I have used this class for sending the data.

The ‘write’ method of DataOutputStream class is non-blocking. It will immediately copy the entire buffer to the System buffer. This effect is very common for smaller data sizes (e.g. 1000 bytes) in which case the total time to write the data to the destination sometimes is below 1 milli-sec (shown as 0 milli-sec since java cannot measure time less than 1 milli-sec.). Hence to find upload time, it is not reliable to find out the time exactly before and after the write statements and then determine their difference. Instead, we need to find out the time after ‘readLine’ statement on the destination computer. ‘readLine’ method of BufferedReader class, is a blocking statement. Thus we are assured that it will return only when all of data has reached the destination application.

3.2.2 Time Measurement

Measuring times on two devices opens a Pandora box of various synchronization issues. The clock of the two computers needs to be synchronized (even difference of 1 sec is equal to 1000 milli-sec in final calculations). For example, I could have opted for the following approach:

Determine Download Time at Client side and Total Round Trip Time (Update) at Server side i.e. Server would note the time before sending data (say TS1). Client would calculate the time after reading all the data (TC1). Then TC1 – TS1 is the Download time. The Client will then send back the data to the server. The server will again calculate time after ‘read’ statement (say TS2). Then (TS2 – TS1) will be Total Update Time.

However accuracy of measuring time at two different machines is very doubtful. Even if both the computers are connected through Internet to any of the Time Servers like Network Time Protocol (NTP), the synchronization cannot be trusted at millisecond level. This is because of Network delays through the Internet, difference in CPU Interrupt and Scheduling (Time Slicing) mechanisms. If one CPU is running faster and is allowing more time slice to java program, then time difference calculated would be smaller and vice versa. Thus measuring time differences on two CPUs is more representative of CPU time slicing than Network Transmission Time (for smaller data sizes). As the data sizes are increased, the effect of CPU Scheduling as compared to the Network Delays becomes smaller.

Thus I opted to perform all Time Measurement at the same machine. Also I made sure that times are always measured after the ‘read’ method call and not the ‘write’ method call. Server first sends particular amount of data to the client. Client reads the data and determines the download time (say Td). Client then updates the data and sends it back to the server (noting down the time just before the ‘write’ statement say T1). Server then reads the data and immediately sends it back again. Client reads the data and measures the time (say T2). Then upload time = T2- T1 – Td. Thus there are two round trips involved. Download time is calculated from the first and Upload and Total Round Trip Time are calculated from the second. No time calculations are done at the Server side. All time related measurements are performed at the Client side

3.2.3 Link Status

Another factor worth mentioning while executing the test environment is that of ‘Link Status’. Consider Figure 3.1. This figure was captured at the Client workstation using the Link Meter provided with the Aironet Client Utility (ACU) for a Cisco Aironet 350 Series PCI Wireless Adapter. The following Link Status is excellent, Signal Strength is 100% and Signal Quality is 95%. The Signal Strength signifies the strength of connection of the radio card with the Access Point. This is the status before the data transfer (java Client Server programs) started.

[image: image13.png]
Fig. 3.1 Link Status before the Data Transfer

Lets say I want to send 11 Mbits of data (= 1,375,000 bytes). As soon as the data transfer begins (i.e. both client and server programs start executing), the signal strength and quality starts to fluctuate. Consider figure 3.2. Now the signal strength has dropped to 52% and signal quality to 88%. Again this is the fluctuation experienced by the radio card in client machine. Radio card in server machine also showed similar fluctuations.

These fluctuations are very significant at larger data sizes. These can be caused by various types of RF interferences like multiple Access Points operating at same channels, Microwave and Cordless Phones, Antenna Orientation etc and are typical of wireless networks. If signal strength drops abruptly to intolerable levels, some data packets may be lost or corrupted causing CRC check errors at the MAC level etc. Thus even for a well-written Java program, exceptions like connection timeout (at Application level) might occur. Moreover, few of the test runs resulted in an extremely large measurement of time that cannot be generalized for that particular scenario. In such cases, if a time value is extremely high as compared to almost all of the other test runs for a case, I have disregarded that particular value. For all the different data sizes, each test is run for 50 times and then the average is calculated for analysis. This provides more credibility to the test results and compensates for occasional speedy bursts or sluggishness in the connection.

[image: image14.png]
Fig. 3.2 Link Status after the Data Transfer

3.2.4 Conversion Table

The data specified in the result tables (Appendix B) is in Mb/s (Mega bit / sec). In the program source code, the data is sent by the Server (and the Client) in terms of bytes. How many bytes we need to send, depends upon the different sizes of data as specified in the Mb. (We can calculate number of bytes by dividing number of bits by 8). The

Following is the unit conversion table:

	MEGABITS (Mb)
	BYTES (B)
	MEGABYTES (MB)

	0.2
	25000
	0.0250

	0.5
	62500
	0.06250

	1
	125000
	0.1250

	2
	250000
	0.250

	5
	625000
	0.6250

	8
	1000000
	1.00

	11
	1375000
	1.3750

	22
	2750000
	2.750

Table. 3.1 Unit Conversion Table

3.3 Test Setup

The tests consisted of three main hardware components; Server Workstation (Desktop Computer), Client Workstation (Desktop Computer) and Access Point. Each Desktop Computer was about 5 feet from the Access Point.

3.3.1 Server Workstation (Desktop Computer)

This computer will host the java based server program.

3.3.1.1 Hardware Configuration

· Intel based Pentium II 400 MHz

· 256 MB RAM

· Cisco Aironet 350 Series Wireless LAN Adapter

· PCI Card

· Frequency band of 2.4 to 2.4897 GHz

· Based on DSSS

· Can work in both infrastructure and ad hoc modes

· Uses CSMA/CA

· 11 operating channels in North America

· Max transmit power of 100mW

· Firmware Version: 4.25.30

· NDIS Driver Version: 8.2.3

3.3.1.1 Software Configuration

· OS: Windows 2000 Server

· Java 2 Standard Edition v1.4.1

· Cisco Aironet Client Utility

· For association, WEP encryption, SSID

· Channel and transmit power settings

· Checking Link Status and quality including signal strength

· Setting factors like RTS and Fragment Threshold etc

· Site Surveying

3.3.2 Client Workstation (Desktop Computer)

This computer will host the java based client program and ‘calculation.java’

3.3.2.1 Hardware Configuration

· Intel based Pentium II 400 MHz

· 256 MB RAM

· Cisco Aironet 350 Series Wireless LAN Adapter

· PCI Card

· Frequency band of 2.4 to 2.4897 GHz

· Based on DSSS

· Can work in both infrastructure and ad hoc modes

· Uses CSMA/CA

· 11 operating channels in North America

· Max transmit power of 100mW

· Firmware Version: 4.25.30

· NDIS Driver Version: 8.2.3

3.3.2.1 Software Configuration

· OS: Windows 2000 Professional

· Java 2 Standard Edition v1.4.1

· Cisco Aironet Client Utility

· For association, WEP encryption, SSID

· Channel and transmit power settings

· Checking Link Status and quality including signal strength

· Setting factors like RTS and Fragment Threshold etc

· Site Surveying

3.3.3 Cisco Aironet Access Point

Access point is absolute necessity in case of wireless LAN running in Infrastructure mode. All traffic between the two computers in the wireless network has to pass through this Access Point. Thus it is analogous to a hub or switch in a wired LAN.
· Make and Model:
Cisco Aironet 350 Series

· Data Rates Supported:
1, 2, 5.5, 11 Mbps

· Network Standard:
IEEE 802.11b

· Uplink:

Auto-Sensing 10/100BaseT Ethernet

· Frequency Band:

2.4 to 2.497 GHz

· Network Architecture:
Infrastructure

· Wireless Medium:
Direct Sequence Spread Spectrum (DSSS)

· Access Mechanism: CSMA/CA

· Supports IEEE 802.1x-based Extensible Authentication Protocol (EAP) services that provide centralized, user-based authentication and single-user, single-session encryption keys

· Maximum transmit Power: 100 mW

3.4 Test Data And Results

The complete set of test data hence obtained is provided in Appendix B. This Chapter will only summarize and evaluate the results obtained.

3.4.1 Definition Of Terms

Definition of some important terms used in these tests is as following:

· Fragment Threshold (FTS)

This parameter defines a threshold value above which the RF packet will be split up, or fragmented. For a fragmented packet, if transmission of part of it were interfered with, only the portion that was unsuccessful would need to be resent. Throughput will generally be lower for fragmented packets, since the fixed packet overhead consumes a higher portion of the RF bandwidth.

· RTS Threshold (RTS)

This parameter controls for what size data packets the low – level RF packet issues an RTS packet. RTS/CTS (Request To Send / Clear To Send) exchange is used to guarantee reservation of the medium and uninterrupted data transmission. Smaller value will cause RTS packets to be sent more often thus consuming more of the available bandwidth. However, the more often RTS packets are sent, the quicker the system can recover from interference or collisions.

· Download Mode

The mode when the Client is reading the data being sent by the Server. The total time required for this mode is equal to the total time required by the ‘read’ statement in the test program

· Upload Mode

The mode when the Client is sending (or uploading) the data to the Server.

· Total Update

It represents a single complete task. Mathematically, it is the sum of Download and Upload modes.

· Theoretical Throughput

This is the maximum possible theoretical throughput that can be achieved for a particular scenario. No valid test run can produce throughput value greater than this value. It is always set at the Access Point. By default ‘Dynamic Rate Shifting’ is used i.e. Access Point tries to deliver data at 11 Mbps if possible otherwise it delivers at next higher level available and so on.

3.4.2 FTS Tests

3.4.2.1 Overview

Four tests were performed with FTS values 2312 (default), 1500, 1000 and 256 bytes for different data sizes as provided in Table 3.1. The tests are numbered B-F1, B-F2, B-F3 and B-F4 respectively in Appendix B where the test data and graphic illustrations for each test are provided.

3.4.2.2 Summary Of Results

FTS is defined at the MAC layer in 802.11b protocol. Almost all of the wireless card manufacturers allow us to change this parameter unlike most of the wired networks. Greater the value of FTS, lesser will be the total fragments send for the same total data size (thus lesser transmission overhead) but greater re-transmission overhead if packet loss occurs. The tests results showed that greater the value of FTS greater is the throughput and vice versa. The reason is that the tests were carried out in a controlled environment with little interference. Thus transmission overhead for greater number of frames was far bigger factor than savings in retransmission delays. One can refer to the research paper in Appendix C for further explanation.

The results for the tests are summarized below in graphical format.

[image: image15.wmf]Performance vs FTS (Download Mode)

0

0.5

1

1.5

2

2.5

3

3.5

0

500

1000

1500

2000

2500

FTS (Bytes)

Data Size = 22 Mb

Data Size = 11 Mb

Data Size = 5 Mb

Data Size = 1 Mb

Fig. 3.3 FTS Results Summarized (Download Mode)

[image: image16.wmf]Performance vs FTS (Upload Mode)

0

0.5

1

1.5

2

2.5

3

3.5

0

500

1000

1500

2000

2500

FTS (Bytes)

Data Size = 22 Mb

Data Size = 11 Mb

Data Size = 5 Mb

Data Size = 1 Mb

Fig. 3.4 FTS Results Summarized (Upload Mode)

[image: image17.wmf]Performance vs FTS (Update Mode)

0

0.5

1

1.5

2

2.5

3

3.5

0

500

1000

1500

2000

2500

FTS (Bytes)

Data Size = 22 Mb

Data Size = 11 Mb

Data Size = 5 Mb

Data Size = 1 Mb

Fig. 3.5 FTS Results Summarized (Update Mode)
3.4.3 RTS Tests

The RTS/CTS mechanism involves exchange of frames before the actual data is sent. The RTS and CTS frames contain a Duration ID field that defines the period of time that the medium is to be reserved to transmit the actual data frame and the returning ACK frame. Stations receiving the RTS or CTS will set their Network Allocation Vector (NAV) to signify the reservation of the medium for the desired duration. This mechanism is especially useful in case of Hidden Node problem. In the following test there was no simulation of Hidden Node problem thus evidently there is little effect of RTS on performance except for causing additional overhead. However one can refer to Appendix 3 for the RTS/CTS results based on Hidden Node problem.

Usually the FTS parameter is also kept equal to the RTS parameter.
For e.g. I am sending a packet of 2312 bytes with FTS equal to 2312 bytes and RTS set 1 byte. Thus there will be only one RTS/CTS exchange before sending 2312 bytes. The data will be sent in only one packet since FTS is equal to 2312 bytes. Even if I increase RTS to some higher values like 500, 1000, 1500 bytes etc, still only single RTS/CTS exchange will take place and only one packet will be transmitted. In other words, RTS parameter does specify the minimum packet size for the RTS/CTS exchange to occur but the actual packet size on the network depends on FTS parameter.

 As stated before, RTS/CTS exchange is very effective for Hidden Node problem. If every node is able to see each other on the wireless network (no hidden node problem), RTS/CTS exchange incurs some over overhead. Thus results cited in the research paper in Appendix C provide real picture of the effectiveness of RTC/CTS exchange.

3.4.4 WEP Tests

3.4.4.1 Overview

Four tests were performed with FTS values 2312 (default), 1500, 1000 and 256 bytes with WEP enabled for different data sizes as provided in Table 3.1. The tests are numbered B-W1, B-W2, B-W3 and B-W4 respectively in Appendix B where the test data and graphic illustrations for each test are provided.

The earlier tests for FTS parameter and for RTS included sending data in plain text format i.e. WEP was disabled. 802.11b standard provides a symmetric encryption technique to encrypt the data. 40 bit and 128 bit ASCII and Hexadecimal keys can be entered in wireless computers and in the Access Points. In my experiments, I used 28 bits Hexadecimal Key.
3.4.4.2 Summary Of Results

WEP is optional encryption standard for 802.11b wireless networks. It is implemented in the network adapter card’s firmware. From the results obtained from various experiments, it is very clear that WEP has virtually no effect on the performance characteristics of wireless network. A sample test case is illustrated below for comparison purposes.

[image: image18.wmf]Performance vs Data Size (WEP Enabled, FTS = RTS = 2312 Bytes)

0

0.5

1

1.5

2

2.5

3

3.5

4

0

5

10

15

20

25

Data Size (Mb)

Performance (Mb/s)

Download Mode

Upload Mode

Update Mode

Fig. 3.6 Results Summarized (WEP Enabled, FTS=RTS=2312 bytes)

[image: image19.wmf]Performance vs Data Size (FTS = 2312)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

5

10

15

20

25

Data Size (Mb)

Download Mode

Upload Mode

Update Mode

Fig. 3.7 Results Summarized (WEP Disabled, FTS=RTS=2312 bytes)
4. Implementing Secure Socket Layer

4.1 Overview

SSL (Secure Sockets Layer) is a protocol for encrypting TCP/IP traffic that also incorporates authentication and data integrity. The latest version of SSL is referred to as Transport Layer Security (TLS). TLS v1.0 is equivalent to SSL v3.1. SSL was developed by Netscape and is now supported by both Netscape and Internet Explorer browsers.

SSL runs on top of TCP/IP and is most commonly used to secure HTTP (i.e. HTTPS). SSL uses TCP/IP on behalf of the higher-level protocol. It allows both Server and Client authentication and allows both machines to establish an encrypted connection.

Since communication in SSL is encrypted between client and server with a session key, to establish this key, both client and server need to agree on a key exchange algorithm to send the encrypted parameters for this session key. In a Server Only Authentication, Client encrypts a number of random bytes with the server’s public RSA key to create a session key. This algorithm will be used in the initial handshake process. In the following tests, I used RSA algorithm for key exchange. RSA is standard method and is most commonly used in various browsers and servers.

SSL also supports various ciphers for data encryption including RC4, TripleDES, DES, and RC2 etc. I used RC4 for my tests. SSL also supports MD5 and SHA1 for creating message authentication codes (MACs). MACs guarantee the integrity of messages.

The SSL protocol includes two sub-protocols: the SSL record protocol and the SSL handshake protocol. The SSL record protocol defines the format used to transmit data. The SSL handshake protocol involves using the SSL record protocol to exchange a series of messages between an SSL-enabled server and an SSL-enabled client when they first establish an SSL connection

4.2 SSL Handshake

Steps involved in a typical SSL Handshake where only server gets authenticated by an anonymous client are as following:

· Client sends a hello message containing SSL version number, list of supported ciphers and randomly generated data etc.

· Server responds with its own hello message in response containing its SSL version number, ciphers chosen from client’s list, randomly generated data and its information and public key in a X.509 based digital certificate. Client will now be able to send encrypted messages to server using this public key.

· Client authenticates the server certificate. Then using all data generated in the handshake so far, the client creates the pre-master secret for the session, encrypts it with the server's public key and sends the encrypted pre-master secret to the server (client_key_exchange message in Fig. 4.1).

· The client then creates master key (or session key) from pre-master secret for future data encryption. It then sends a change_cipher_spec message to server confirming various parameters including ciphers to be used etc. The session key will not be send over to the server.

· Client then sends a finished message encrypted with the session key and including MAC for integrity.

· Server also computes session key independently. It then sends a message to the client confirming various parameters.

· It then sends a separate (encrypted) message indicating that the server portion of the handshake is finished.

The asymmetric encryption based Handshake is now completed after server authentication and mutual agreement on session key. Any further communication between client and server will be based on Symmetric Key encryption using the session key.

[image: image20.png]
Fig. 4.1 SSL Handshake

4.3 Test Setup

The hardware for the test consists of three main components including:

4.3.1
Server Workstation (Desktop Computer)

4.3.1.1
Hardware Configuration

· Intel based Pentium II 400 MHz

· 256 MB RAM

· Cisco Aironet 350 Series Wireless LAN Adapter

· PCI Card

· Frequency band of 2.4 to 2.4897 GHz

· Based on DSSS

· Can work in both infrastructure and ad hoc modes

· Uses CSMA/CA

· 11 operating channels in North America

· Max transmit power of 100mW

· Firmware Version: 4.25.30

· NDIS Driver Version: 8.2.3

4.3.1.1 Software Configuration

· OS: Windows 2000 Server

· Java 2 Standard Edition v1.4.1_04

· Cisco Aironet Client Utility

· For association, WEP encryption, SSID

· Channel and transmit power settings

· Checking Link Status and quality including signal strength

· Setting factors like RTS and Fragment Threshold etc

· Site Surveying

4.3.2 Client Workstation (Desktop Computer)

4.3.2.1 Hardware Configuration

· Intel based Pentium II 400 MHz

· 256 MB RAM

· Cisco Aironet 350 Series Wireless LAN Adapter

· PCI Card

· Frequency band of 2.4 to 2.4897 GHz

· Based on DSSS

· Can work in both infrastructure and ad hoc modes

· Uses CSMA/CA

· 11 operating channels in North America

· Max transmit power of 100mW

· Firmware Version: 4.25.30

· NDIS Driver Version: 8.2.3

4.3.2.2 Software Configuration

· OS: Windows 2000 Professional

· Java 2 Standard Edition v1.4.1_04

· Cisco Aironet Client Utility

· For association, WEP encryption, SSID

· Channel and transmit power settings

· Checking Link Status and quality including signal strength

· Setting factors like RTS and Fragment Threshold etc

· Site Surveying

4.3.3 Cisco Aironet Access Point

Access point is absolute necessity in case of wireless LAN running in Infrastructure mode. All traffic between the two computers in the wireless network has to pass through this Access Point. Thus it is analogous to a hub or switch in a wired LAN.
· Make and Model:

Cisco Aironet 350 Series

· Data Rates Supported:
1, 2, 5.5, 11 Mbps

· Network Standard:
IEEE 802.11b

· Uplink:

Auto-Sensing 10/100BaseT Ethernet

· Frequency Band:

2.4 to 2.497 GHz

· Network Architecture:
Infrastructure

· Wireless Medium:
Direct Sequence Spread Spectrum (DSSS)

· Access Mechanism: CSMA/CA

· Supports IEEE 802.1x-based Extensible Authentication Protocol (EAP) services that provide centralized, user-based authentication and single-user, single-session encryption keys

· Maximum transmit Power: 100 mW

[image: image21.png]

Fig. 4.2 SSL Test Setup

4.4 Performance Analysis

For performance analysis, I installed the java client program on client workstation and server program on server workstation. The wireless network was run in Infrastructure mode thus all the data has to pass through the Access Point.

4.4.1
Test Data

	Data Size (Bytes)
	With SSL

Throughput (Kb/s)
	Normal Java Socket Program

Throughput (Kb/s)

	512
	13.44
	70.64

	1024
	25.4
	130.04

	2048
	49.88
	244.52

	4096
	97.96
	377.04

	8012
	180.28
	512.28

Table 4.1 Test Data For SSL Performance Analysis

4.4.2
Program Execution

The table values for the SSL column were measured using pair of SSL_Client.java and SSL_Server.java provided in Listing No 4 and 5 of Appendix E. For the usual java socket program column values, pair of Normal_Client.java and Normal_Server.java provided in Listing No 6 and 7 of Appendix E was employed. The client programs were run several times and then the average values were obtained. The input to the programs was data sizes (in bytes) and output were the round trip times in milliseconds.

First of all we need to generate the key store for the Server and the Client SSL programs. Then we need to create a certificate for the server. This certificate will then be added to the client key store. Thus whenever we’ll execute the program, the client program (during the handshake process) will look for a valid certificate for the server in its trusted key store and verify it.

· To generate keystore (“.keystore”) for Server side, I used;

> keytool –genkey –v –keyalg RSA –keystore .keystore

keytool will ask a few questions about the certificate. The process is shown below in a sample screen shot.

[image: image22.png]
Fig. 4.3 Creating Keystore in java

For client side also I used the same name for the key store i.e. .keystore

· To create the server certificate, I used;

> keytool –export –keystore .keystore –file myCert.cer

· Then I copied this file onto floppy disk and brought it to the client side. The file was added to the client’s trusted key store using;

>keytool –import –alias myCert –file myCert.cer –keystore .keystore

· First I ran the server program using the following command (say for 512 bytes of data)

>java –Djavax.ssl.net.keyStore=.keystore –Djavax.net.ssl.keyStorePassword = changeit SSL_Server.java 512

· To run the client program, I used;

> java –Djavax.ssl.net.trustStore=.keystore SSL_Client 512

For the Normal Java Socket Programs;

· To run the server program (say for 512 bytes of data)

>java Normal_Server 512
· Then I ran the client program using;

>java Normal_Client 512
4.4.3 Explanation Of Results

Just by looking at Table 4.1, the difference between the throughput values for SSL Client – Server program and Normal Client – Server becomes obvious. However these values are based on Java implementation and thus can be correctly explained only in Java’s context.

In SSL_Client.java (Listing No 4, Appendix E), first a socket connection is made but no client side SSL verification is done. This verification is done only when the data is sent for the first time i.e. when the first ‘write’ statement is executed. That is exactly why I am sending and receiving data only once using SSL_Client.java to signify the effect of Handshake in SSL. If I had for example, send data say 10 times and then taken average, the results would not have been true representation of actual measurements. The corresponding Server program is SSL_Server.java provided in Listing No 5 of Appendix E. Normal client server programs are Normal_Client.java and Normal_Server.java provided in Listing No 6 and 7 of Appendix E respectively.

[image: image23.png]
Fig. 4.4 Sample Run of SSLClient.java

To better explain above explanation, consider programs in Listing No 8 through Listing No 11, Appendix E. Listing No 8 (SSLClient.java) will write and then immediately read the data any number of times by executing number of iterations. The server program is provided in Listing No 9 (SSLServer.java). First I run the server program providing the data size and number of loops at command prompt. Then I run the client program providing the same command line input. Sample run of the client program with 10 iterations is shown in Fig. 4.4.

Consider Figure 4.4. All times are in milliseconds. The time to just create a simple socket connection is 130ms. However consider first iteration (Loop No 0). The Round Trip Time is 581ms. This iteration executes the very first write statement and thus the Server certificate verification is done in this loop. For the rest of the loops, there is no authentication and thus the Round Trip Time is comparatively very less.

Now consider Figure 4.5 below. This is a normal client server java program. Client program is Client.java (Listing No 10) and server program is Server.java (Listing No 11). The time to create a socket connection is 100ms. However all the iterations show similar Round Trip Times without any exceptions. Moreover these times are very similar to those in Figure 4.4. This shows that normal encryption of data in SSL is not so expensive; it’s the initial handshake that causes much of delay. From Figs 4.4 and 4.5, we can deduce the Handshake time to be approximately equal to 540ms.

[image: image24.png]
Figure 4.5 Sample Run of Client.java

The above stated results can also be verified if I use the SSLClientSocket and SSLServerSocket classes instead of their parent classes in the program code. The code for client and server program is given in Listing No 12 (SSL_Client2.java) and Listing No 13 (SSL_Server2.java) in Appendix E. A sample run of these programs (Fig 4.6) provides us with similar results as were shown in Fig 4.4. In this case ‘startHandshake’ method explicitly initiates the handshake so all the ‘write’ statements then take normal length of round trip time.

[image: image25.png]
Fig. 4.6 Sample Run of SSL_Client.java
The value of FTS and RTS for these tests was kept at 2312 bytes in both Wireless PCs and the Access Point. This means any packets less than 2312 bytes will be send as single packet without any fragmentation. Thus as the test data approaches FTS, the throughput increases remarkably irrespective of type of tests (i.e. SSL and Normal). Refer to table 4.1. Moreover in case of SSL based tests, the most expensive part in terms of time i.e. Server authentication is done once and after that all the encrypted data packets are sent. This clearly will increase the over all throughput rate for larger data sizes. However as we move to larger data sizes, throughput tends to settle down at a constant level.

4.4.4 Comparison Of Results

The values in Table 4.1 are lesser than the throughput values obtained in the initial performance tests (Chapter 3 and Appendix B). For e.g. the throughput for a normal java socket program (without any SSL) is 0.542 Mbps (542 kbps) for data size of 8012 bytes while for same values of FTS, RTS etc, the average throughput in the earlier tests was around 3Mbps. This apparent anomaly can be explained as following:

· Minimum Data Size: Java program runs at the application level on top of JVM (Java Virtual Machine) and the Operating System. At this high level sending very small amount of data will not provide very correct measure of the network performance. In the earlier tests i.e. the minimum data size used was 25000 bytes (0.2 Mb). However, in this section of the Thesis project, we are more interested in the comparison of throughput values with and without SSL.

· Definition Of Throughput: In the earlier java program, time for creating socket connections was not taken into account (Refer to Listing No 1 and 2, Appendix E). Throughput was defined as merely time taken by data packets on the network. In this case we are taking socket creation time into account for comparison purposes. Moreover since we are sending the data only once, socket creation has a huge impact on final throughput value. For e.g. in my tests socket creation took about 110msec while data transfer took about 50msec for 8012 bytes of data. If I use 160msec as total time for transferring 4096 bytes, throughput comes out to be 0.80 Mbps but if total transfer time is taken as 50msec, throughput comes out to be 2.6 Mbps which is very comparable to values obtained earlier.

· Wireless Medium: As stated earlier also, wireless medium faces much more interferences than wired networks including cordless phones, microwave ovens, absorption by walls, other wireless networks in same frequency range, other access points sending out a lot of beacons and control information. Thus you can expect the throughput values to be similar but not very similar every time you measure performance even keeping all (apparent) parameters similar.

4.5
Security Analysis

4.5.1 Tools Overview

For security analysis, I installed first WinPcap and then Snort on the client workstation
4.5.1.1 WinPCap

WinPCap is architecture for packet capture and network analysis for the Win32 platforms. It includes a kernel-level packet filter, a low-level dynamic link library (packet.dll), and a high-level and system-independent library (wpcap.dll, based on libpcap version 0.6.2).

The packet filter is a device driver that adds to Windows 95, 98, ME, NT, 2000 and XP the ability to capture and send raw data from a network card, with the possibility to filter and store in a buffer the captured packets. Packet.dll is an API that can be used to directly access the functions of the packet driver, offering a programming interface independent from the Microsoft OS [4].

4.5.1.2 Snort

Snort is an open sourced, lightweight, network intrusion detection system. It makes use of an easy to learn rules system to detect and log the signatures of possible attacks. It was originally created for the Unix operating systems and has now been ported over to the Windows family of operating systems as well. It requires WinPcap to run.

To run the snort and store the log files in a directory say ‘log’ within the current directory, I used the following command;

>snort –dev –l ./log
-v switch instructs snort to display TCP/IP packet headers only

-d switch instructs snort to display packet data as well

-e switch instructs snort to display data link layer headers also.

4.5.2
Program Execution And Explanation

First I ran the snort using the above program.

Then I ran the SSL_Client.java (Listing No 4, Appendix E) using

>java –Djavax.net.ssl.trustStore=.keystore SSL_Client 512

and SSL_Server.java (Listing No 5, Appendix E) using;

> java –Djavax.net.ssl.keyStore=.keystore –Djavax.net.ssl.keyStorePassword=changeit SSL_Server 512
The output captured by the snort program is shown below divided into various screen shots for clarity:

[image: image26.png]
Fig. 4.7 Initialization of Snort program

The Handshake process starts with exchange of workgroup information and computer identities. Note that name of server workstation is D156-29515 and name of workgroup is WorkGroup. IP address of server workstation is 192.168.100.216 and that of client workstation is 192.168.100.215. Various other TCP messages (mostly acknowledgments) have been omitted from screen shots for clarity.

[image: image27.png]
Fig. 4.8 SSL Handshake Process (Snort Screenshot)

Following screen shot further shows the certificate information exchanged by the server. You can make out the various information elements that were entered while creating the server certificate (Figure 4.3). For e.g. while creating server certificate, organizational unit was entered as ‘Wireless1’, organization as ‘UHCL1’, city as ‘Hoston1’ (intentionally misspelled), state as ‘TX1’ and country as ‘US1’. All this information can be viewed in the following screen shot.

[image: image28.png]
Fig. 4.9 Server Certificate Parameters (Snort Screenshot)

The actual data portion is shown in the following screen shot. Data is encrypted and its not easy to break into the encrypted data.

[image: image29.png]
Fig. 4.10 Encrypted Data (Snort Screenshot)

Following is a screen shot obtained by running Normal_Client.java and Normal_Server.java (Listing No 6 and 7, Appendix E). Only the data element is shown for comparison purposes. In the Normal_Client program, I am using ‘r’ as single byte to fill a byte array and then I am sending the byte array. You can see all the data (r’s) in clear text format.

[image: image30.png]
Fig. 4.11 Plain Text Data (Snort Screenshot)

5. Implementing Virtual Private Network

5.1 Overview

VPN is a private data network that makes use of the public telecommunication infrastructure, maintaining privacy through the use of a tunneling protocol and an encryption algorithm. The main aim of VPN is to provide an organization with the same level of security over public shared networks as is available in the case of private leased lines.

Private Networks include the leased lines obtained from big telecommunication companies like MCI World-Com, Regional Bell Companies etc. However;

· They are very costly to plan deploy.

· They take a lot of time for installation

· Access from employees from outside the company’s Intranet using Dial-up, isdn etc requires maintaining large modem pools, which is very expensive. Making a reliable secure connection through Internet proves to be much cheaper.

· Company also has to pay addition costs in terms of long distance calling especially International dialing.

There are two common types of VPN;

· Remote Access VPNs are User to LAN connection used by a company that has employees who need to connect to the private network from various remote locations. It is also called Virtual Private Dial-up Network (VPDN)

· Site to Site VPNs connects multiple fixed sites over a public network such as Internet through the use of dedicated equipment.

Thus VPN technology provides the means to securely transmit data between two network devices over an insecure data transport medium [13]. VPN technology has been used successfully in wired networks especially when using Internet as a physical medium. This success of VPN in wired networks and the inherent security limitations of wireless networks have prompted developers and administrators to deploy it in case of wireless networks. VPN works by creating a tunnel, on top of a protocol such as IP.

[image: image31.png]
Fig. 5.1 Connection without VPN

[image: image32.png]
Fig. 5.2 Connection with VPN

I employed the VPN using Microsoft Point To Point Encryption (MPPE) as the encryption standard and Point To Point Tunneling Protocol as the tunneling standard.

5.1.1 Point To Point Tunneling Protocol

Point-to-Point Tunneling Protocol (PPTP) is a network protocol that enables the secure transfer of data from a remote client to a private enterprise server by creating a virtual private network (VPN) across TCP/IP-based data networks. PPTP is a network protocol that encapsulates PPP packets into IP datagrams for transmission over the Internet or other public TCP/IP-based networks. PPTP can also be used in private LAN-to-LAN networking.

PPTP enables a low-cost, private connection to a corporate network through the public Internet. This is particularly useful for people who work from home or people who travel and must access their corporate networks remotely to check e-mail or perform other activities. PPTP makes use of the security provided through PPP. Microsoft Challenge Handshake Authentication Protocol (MS-CHAP) is used to validate the user credentials against Windows NT domains and the resulting session key is used to encrypt user data. PPTP is included at no additional cost in Windows NT 4.0 versions and higher.

5.1.2 Microsoft Point To Point Encryption

Microsoft Point-to-Point Encryption (MPPE) encrypts data in PPP-based dial-up connections or PPTP VPN connections. Strong (128-bit key) and standard (40-bit key) MPPE encryption schemes are supported. MPPE provides data security between PPTP connection and the tunnel server. MPPE requires encryption keys as generated by Microsoft Challenge Handshake Authentication Protocol (MS-CHAP), Microsoft Challenge Handshake Authentication Protocol version 2 (MS-CHAP v2), or Extensible Authentication Protocol-Transport Level Security (EAP-TLS) authentication process. MPPE uses the RSA RC4 algorithm to provide data confidentiality. MPPE session keys are changed frequently; the exact frequency depends upon the options negotiated, but may be every packet. This is because IP datagrams sent across the network can arrive in different order and can be easily lost as well. Thus decryption of each packet is independent of the other.

5.2
Need for VPN in Wireless Networks

Wireless networking is inherently more vulnerable and less secure than wired networking. In order to come up with a security solution for wireless networks, we first want to emphasize two important aspects of wired networks in terms of their security:

1. There is no specification of any encryption standard to be implemented in case of wired LANs. This is because the wired networks (i.e., the cabling, the routers, etc.) are usually within the enclosed physical structure of an organization.

2. Even if the medium used is insecure (e.g., the Internet), to implement security, emphasis is laid on Network Layer and above instead of Physical Layer. For example, some form of user authentication or Internet Firewall can be implemented. This is because in case of Internet, there is no one physical dedicated link between the two end stations. Thus Physical Layer cannot be relied upon providing substantial security.

Wireless network cannot be confined within a physical boundary. Moreover argument No.2 above for wired networks could be logically applied to wireless networks also. Thus instead of encrypting the data using WEP Key, a secure end-to-end connection (or tunnel) can be implemented which necessitates the use of VPN Technology.

5.3
TEST SETUP

The hardware for the test consists of three main components including:

5.3.1 Server Workstation (Desktop Computer)

Hosted the VPN Server as well as the java server socket program

5.3.1.1.1 Hardware Configuration

· Intel based Pentium II 400 MHz

· 256 MB RAM

· Cisco Aironet 350 Series Wireless LAN Adapter

· PCI Card

· Frequency band of 2.4 to 2.4897 GHz

· Based on DSSS

· Can work in both infrastructure and ad hoc modes

· Uses CSMA/CA

· 11 operating channels in North America

· Max transmit power of 100mW

· Firmware Version: 4.25.30

· NDIS Driver Version: 8.2.3

5.3.1.2 Software Configuration

· OS: Windows 2000 Server

· Java 2 Standard Edition v1.4.1_04

· Cisco Aironet Client Utility

· For association, WEP encryption, SSID

· Channel and transmit power settings

· Checking Link Status and quality including signal strength

· Setting factors like and Fragment Threshold etc

· Site Surveying

5.3.2 Client Workstation (Desktop Computer)

Hosted the VPN Client as well as the java client socket program

5.3.2.1 Hardware Configuration

· Intel based Pentium II 400 MHz

· 256 MB RAM

· Cisco Aironet 350 Series Wireless LAN Adapter

· PCI Card

· Frequency band of 2.4 to 2.4897 GHz

· Based on DSSS

· Can work in both infrastructure and ad hoc modes

· Uses CSMA/CA

· 11 operating channels in North America

· Max transmit power of 100mW

· Firmware Version: 4.25.30

· NDIS Driver Version: 8.2.3

5.3.2.2
Software Configuration

· OS: Windows XP Professional

· Java 2 Standard Edition v1.4.1_04

· Cisco Aironet Client Utility

· For association, WEP encryption, SSID

· Channel and transmit power settings

· Checking Link Status and quality including signal strength

· Setting factors like RTS and Fragment Threshold etc

· Site Surveying

5.3.3 Cisco Aironet Access Point

· Make and Model:
Cisco Aironet 350 Series

· Data Rates Supported:
1, 2, 5.5, 11 Mbps

· Network Standard:
IEEE 802.11b

· Uplink:

Auto-Sensing 10/100BaseT Ethernet

· Frequency Band:

2.4 to 2.497 GHz

· Network Architecture:
Infrastructure

· Wireless Medium:
Direct Sequence Spread Spectrum (DSSS)

· Access Mechanism: CSMA/CA

· Supports IEEE 802.1x-based Extensible Authentication Protocol (EAP) services that provide centralized, user-based authentication and single-user, single-session encryption keys

· Maximum transmit Power: 100 mW

[image: image33.png]
Fig. 5.3 VPN Test Setup

5.4 Setting Up A VPN Connection

Setting up a VPN connection consists of three main steps.

5.4.1 Setting Up VPN Server

Steps along with the screen shots for setting up a VPN Server are provided in Appendix E

5.4.2 Setting Up VPN Client

Steps along with the screen shots for setting up a VPN Client are provided in Appendix E

5.4.3 Connecting To VPN Server

Steps along with the screen shots for connecting a VPN Client to a VPN Server are provided in Appendix E

5.5 Performance Analysis

In the VPN approach, the Access Point will be VPN aware; i.e. it will only accept and forward VPN traffic to a desktop computer configured as VPN server. For Performance Measurement, I used client server programs Normal_Client.java and Normal_Server.java as given in Listing No 6 & 7 in Appendix E. Since I am interested in getting only the throughput values, the VPN
 connection formally is a peer to peer connection though technically one computer has to be configured as VPN Client and the other as VPN Server.

To execute the programs, proceed as following

· To run the server program (say for 512 bytes of data)

>java Normal_Server 512
· Then I ran the client program using;

>java Normal_Client 512
Moreover we have to be very careful about the IP Address, which we are using in order to create the Socket connection (in client java program). Once VPN connection is established, we cannot ping the IP Addresses assigned to the actual physical wireless adapters. We can only ping the PPP adapter’s IP addresses in other words the virtual IP addresses.

5.5.1
Test Data

	Data Size (Bytes)
	VPN Connection

Throughput (Kb/s)
	Normal Connection

Throughput (Kb/s)

	512
	37.51
	50.46

	1024
	101.25
	112.86

	2048
	215.45
	230.66

	4096
	230.44
	278.55

	8012
	227.56
	390.54

Table 5.1 Test Data For VPN Performance Analysis

5.5.2
Explanation

The same client server java programs were run with and without the VPN to measure the performance impact of VPN. However, as is clear from test data, there is not much difference between the two modes. In my test environment, both the wireless desktops were about ten feet away with Access Point in between. Thus distance is much less than a probable real world scenario. Moreover, I am using MPPE with PPTP, which is faster than the more secure solution of IPSec over L2TP. Data sizes in the above tests are also quite small and as we go on increasing the data sizes, the results show that the throughput attains more and more constant level

5.6 Security Analysis

[image: image34.png]
Fig. 5.4 Network Monitor Tool – Main Window

For security analysis, I used Network Monitor tool that comes with the Server editions of Windows 2000. (Snort program was not working in this scenario and failed to capture the packets for analysis purposes). Network Monitor tool can be accessed on Windows 2000 Server through the Control Panel within the Administrative Tools (Refer to Fig. 5.4).

Following is a screenshot of Frame Capture Window of Network Monitor Tool. It lists frames captured during VPN Session. Frame Description clearly shows unknown frame

[image: image35.png]
Fig. 5.5 Network Monitor Tool - Frame Capture Window

Double clicking any frame, whose Source MAC address is that of Windows XP Computer, will show the garbage instead of actual data as shown in the following screenshot.

[image: image36.png]
Fig. 5.6 Garbage output for Encrypted Frame

In contrast to Fig. 5.6, when we send data using normal wireless connection without any VPN, we can easily view the data. (I was sending byte array filled with character ‘r’ from the client java program)

[image: image37.png]
Fig. 5.7 Actual Data For Un-Encrypted Frame

It is very clear from above provided screen shots that data traveling through the VPN tunnel in encrypted format is very secure.

Appendix A

Glossary Of Terms

· ISM: Industrial, Scientific and Medical Frequency Band.
· UNII: Unlicensed National Information Infrastructure Frequency Band.
· Port: A port in this context is a single point of attachment to the LAN infrastructure. Note that in the 802.11 LAN case, an access point manages “logical” ports. Each of these logical ports communicates one-to-one with a station’s port.

· Authenticator: The authenticator enforces authentication before allowing access to services that are accessible via that port. The authenticator is responsible for communication with the supplicant and for submitting the information received from the supplicant to a suitable authentication server. It only acts as a pass through for the authentication exchange.

· Supplicant: The supplicant accesses the services accessible via the authenticator.

· EAP: The Extensible Authentication Protocol (EAP) is a method of conducting an authentication conversation between a user and an authentication server. Intermediate devices such as access points and proxy servers do not take part in the conversation.

· Extensible Authentication Protocol over LAN (EAPOL): 802.1X defines a standard for encapsulating the Extensible Authentication Protocol (EAP) messages so that they can be handled directly by a LAN MAC service. This encapsulated form of EAP frame is known as EAPOL. EAPOL (EAP over LANs) in case of WLANs is also termed as EAPOW (EAP over Wireless).

· RADIUS: is the standard way of providing Authentication, Authorization, and Accounting services to a network.

· WEP: Wired Equivalent Privacy

· MAC: Media Access Control
· RSN: (Robust Security Network). It is the main feature of IEEE 802.11i draft. RSN consists of two basic sub-systems [11] [12]:
· Data Privacy Mechanism
· TKIP (a protocol patching WEP for legacy hardware based on RC4)
· AES based protocol for long term security solution
· Security Association Management
· IEEE 802.1x authentication replacing IEEE 802.11 authentication
· IEEE 802.1x key management to provide cryptographic keys
· TKIP: (temporal Key Integrity Protocol). It is sort of quick fix to existing WEP problems.
· Never uses the same Initialization Vector (IV) value more than once. Thus prevents key stream reuse
· Generates new random session key before the IV counter over flows
· Provides more thorough mixing of IV and session key to generate RC4 key
· If re-keying fails, all data traffic is halted and client disassociated
Appendix B

Performance Test Data

Test B-F1

This test is performed to evaluate the relationship between various sizes of data and (default) FTS value of 2312 bytes.

Radio Card Parameters

· FTS Threshold = 2312 bytes (Default)

· RTS Threshold = 2312 bytes (Default)

· WEP Disabled

· Theoretical Data Rate = ‘Auto Rate Selection’ (Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Access Point Parameters

· FTS Threshold = 2312 bytes

· RTS Threshold = 2312 bytes

· WEP Disabled

· Theoretical Data Rate: 1, 2, 5.5, 11 (Mb/sec) all set to ‘basic’

(Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Plotted Results

[image: image38.wmf]Performance vs Data Size (FTS = 2312)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

5

10

15

20

25

Data Size (Mb)

Download Mode

Upload Mode

Update Mode

Fig. B1 FTS=2312 bytes

Test Data

	FTS

(Bytes)
	DATA

(Mb)
	MODE
	TIME (in milli-secs)
	Perf

(Mb/s)

	
	
	
	Avg
	Median
	Max
	Min
	

	2312

	22
	Download
	7018
	7041
	7090
	6860
	3.13

	
	
	Upload
	7049
	6989
	7210
	6951
	3.12

	
	
	Total Update
	14067
	14030
	14160
	13990
	3.20

	
	11
	Download
	3445
	3405
	3525
	3405
	3.19

	
	
	Upload
	3656
	3655
	3876
	3545
	3.01

	
	
	Total Update
	7100
	7060
	7381
	7010
	3.10

	
	8
	Download
	2602
	2654
	2694
	2434
	3.07

	
	
	Upload
	2505
	2504
	2774
	2343
	3.19

	
	
	Total Update
	5107
	5158
	5448
	4977
	3.14

	
	5
	Download
	1560
	1572
	1622
	1502
	3.21

	
	
	Upload
	1721
	1703
	1853
	1653
	2.91

	
	
	Total Update
	3281
	3275
	3475
	3174
	3.08

	
	2
	Download
	626
	641
	641
	601
	3.19

	
	
	Upload
	747
	731
	791
	701
	2.68

	
	
	Total Update
	1372
	1372
	1412
	1322
	3.92

	
	1
	Download
	313
	311
	331
	300
	3.19

	
	
	Upload
	357
	310
	451
	290
	2.80

	
	
	Total Update
	670
	621
	761
	601
	2.98

	
	0.5
	Download
	160
	160
	200
	150
	3.13

	
	
	Upload
	150
	151
	179
	121
	3.33

	
	
	Total Update
	310
	311
	341
	291
	3.22

	
	0.2
	Download
	69
	71
	80
	60
	2.89

	
	
	Upload
	55
	49
	70
	49
	3.64

	
	
	Total Update
	124
	120
	131
	120
	3.22

Table B1 FTS=2312 bytes

Test B-F2

This test is performed to evaluate the relationship between various sizes of data and FTS value of 1500 bytes.

Radio Card Parameters

· FTS Threshold = 1500 bytes

· RTS Threshold = 2312 bytes (Default)

· WEP Disabled

· Theoretical Data Rate = ‘Auto Rate Selection’ (Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Access Point Parameters

· FTS Threshold = 1500 bytes

· RTS Threshold = 2312 bytes

· WEP Disabled

· Theoretical Data Rate: 1, 2, 5.5, 11 (Mb/sec) all set to ‘basic’

(Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Plotted Results

[image: image39.wmf]Performance vs Data Size (FTS = 1500)

0

0.5

1

1.5

2

2.5

3

3.5

0

5

10

15

20

25

Data Size (Mb)

Download Mode

Upload Mode

Update Mode

Fig. B2 FTS=1500 bytes

Test Data

	FTS

(Bytes)
	DATA

(Mb)
	MODE
	TIME (in milli-secs)
	Perf

(Mb/s)

	
	
	
	Avg
	Median
	Max
	Min
	

	1500

	22
	Download
	7687
	7721
	7791
	7541
	2.86

	
	
	Upload
	7715
	7682
	7681
	7611
	2.85

	
	
	Total Update
	15403
	15403
	15522
	15272
	2.86

	
	11
	Download
	3808
	3805
	3905
	3745
	2.89

	
	
	Upload
	4005
	3926
	4225
	3836
	2.75

	
	
	Total Update
	7813
	7731
	8052
	7671
	2.82

	
	8
	Download
	2838
	2764
	2944
	2704
	2.82

	
	
	Upload
	2742
	2834
	2914
	2524
	2.92

	
	
	Total Update
	5580
	5598
	5688
	5448
	2.87

	
	5
	Download
	1745
	1743
	1853
	1682
	2.87

	
	
	Upload
	1880
	1822
	2032
	1793
	2.66

	
	
	Total Update
	3626
	3565
	3865
	3525
	2.76

	
	2
	Download
	693
	701
	711
	671
	2.87

	
	
	Upload
	800
	771
	851
	761
	2.5

	
	
	Total Update
	1493
	1472
	1562
	1462
	2.68

	
	1
	Download
	352
	360
	371
	340
	2.84

	
	
	Upload
	375
	341
	470
	311
	2.67

	
	
	Total Update
	725
	681
	812
	661
	2.76

	
	0.5
	Download
	176
	180
	191
	160
	2.84

	
	
	Upload
	175
	171
	311
	141
	2.86

	
	
	Total Update
	351
	351
	471
	330
	2.85

	
	0.2
	Download
	76
	80
	121
	50
	2.63

	
	
	Upload
	62
	51
	101
	49
	3.23

	
	
	Total Update
	138
	131
	170
	130
	2.90

Table B2 FTS=1500 bytes

Test B-F3

This test is performed to evaluate the relationship between various sizes of data and FTS value of 1000 bytes.

Radio Card Parameters

· FTS Threshold = 1000 bytes

· RTS Threshold = 2312 bytes (Default)

· WEP Disabled

· Theoretical Data Rate = ‘Auto Rate Selection’ (Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Access Point Parameters

· FTS Threshold = 1000 bytes

· RTS Threshold = 2312 bytes

· WEP Disabled

· Theoretical Data Rate: 1, 2, 5.5, 11 (Mb/sec) all set to ‘basic’

(Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Plotted Results

[image: image40.wmf]Performance vs Data Size (FTS = 1000)

0

0.5

1

1.5

2

2.5

3

3.5

0

5

10

15

20

25

Data Size (Mb)

Performance (Mb/s)

Download Mode

Upload Mode

Update Mode

Fig. B3 FTS=1000 bytes

Test Data

	FTS

(Bytes)
	DATA

(Mb)
	MODE
	TIME (in milli-secs)
	Perf

(Mb/s)

	
	
	
	Avg
	Median
	Max
	Min
	

	1000

	22
	Download
	7632
	7651
	7691
	7491
	2.88

	
	
	Upload
	7643
	7691
	7751
	7531
	2.88

	
	
	Total Update
	15276
	15342
	15362
	15192
	2.88

	
	11
	Download
	3767
	3745
	3855
	3735
	2.92

	
	
	Upload
	3936
	3906
	4115
	3855
	2.79

	
	
	Total Update
	7703
	7651
	7951
	7631
	2.86

	
	8
	Download
	2825
	2875
	2924
	2703
	2.83

	
	
	Upload
	2729
	2753
	2915
	2514
	2.93

	
	
	Total Update
	5554
	5628
	5649
	5418
	2.88

	
	5
	Download
	1729
	1702
	1843
	1682
	2.89

	
	
	Upload
	1874
	1843
	2023
	1803
	2.67

	
	
	Total Update
	3603
	3545
	3846
	3525
	2.78

	
	2
	Download
	689
	701
	712
	671
	2.9

	
	
	Upload
	800
	772
	832
	751
	2.5

	
	
	Total Update
	1489
	1473
	1542
	1452
	2.69

	
	1
	Download
	346
	340
	361
	330
	2.89

	
	
	Upload
	383
	341
	471
	310
	2.61

	
	
	Total Update
	730
	681
	811
	671
	2.74

	
	0.5
	Download
	176
	171
	190
	170
	2.84

	
	
	Upload
	179
	289
	300
	149
	2.79

	
	
	Total Update
	355
	460
	481
	330
	2.82

	
	0.2
	Download
	74
	80
	120
	40
	2.7

	
	
	Upload
	63
	50
	100
	50
	3.17

	
	
	Total Update
	137
	130
	170
	130
	2.92

Table B3 FTS=1000 bytes

Test B-F4

This test is performed to evaluate the relationship between various sizes of data and FTS value of 256 bytes.

Radio Card Parameters

· FTS Threshold = 256 bytes

· RTS Threshold = 2312 bytes (Default)

· WEP Disabled

· Theoretical Data Rate = ‘Auto Rate Selection’ (Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Access Point Parameters

· FTS Threshold = 256 bytes

· RTS Threshold = 2312 bytes

· WEP Disabled

· Theoretical Data Rate: 1, 2, 5.5, 11 (Mb/sec) all set to ‘basic’

(Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Plotted Results

[image: image41.wmf]Performance vs Data Size (FTS = 256)

0

0.5

1

1.5

2

2.5

0

5

10

15

20

25

Data Size (Mb)

Performance (Mb/s)

Download Mode

Upload Mode

Update Mode

Fig. B4 FTS=256 bytes

Test Data

	FTS

(Bytes)
	DATA

(Mb)
	MODE
	TIME (in milli-secs)
	Perf

(Mb/s)

	
	
	
	Avg
	Median
	Max
	Min
	

	256

	22
	Download
	12046
	12018
	12158
	11967
	1.83

	
	
	Upload
	12249
	12217
	12378
	12158
	1.80

	
	
	Total Update
	24296
	24235
	24495
	24155
	1.81

	
	11
	Download
	6004
	6009
	6029
	5978
	1.83

	
	
	Upload
	6152
	6129
	6369
	6038
	1.79

	
	
	Total Update
	12155
	12138
	12378
	12067
	1.81

	
	8
	Download
	4459
	4537
	4556
	4337
	1.79

	
	
	Upload
	4326
	4175
	4557
	4167
	1.85

	
	
	Total Update
	8785
	8712
	8993
	8683
	1.82

	
	5
	Download
	2748
	2734
	2814
	2714
	1.82

	
	
	Upload
	2836
	2794
	2955
	2754
	1.76

	
	
	Total Update
	5584
	5528
	5759
	5508
	1.79

	
	2
	Download
	1097
	1092
	1111
	1091
	1.82

	
	
	Upload
	1179
	1201
	1221
	1151
	1.70

	
	
	Total Update
	2276
	2293
	2323
	2253
	1.76

	
	1
	Download
	552
	551
	561
	540
	1.81

	
	
	Upload
	577
	621
	671
	521
	1.73

	
	
	Total Update
	1129
	1172
	1222
	1081
	1.77

	
	0.5
	Download
	280
	280
	291
	270
	1.79

	
	
	Upload
	277
	270
	371
	260
	1.81

	
	
	Total Update
	556
	550
	651
	540
	1.79

	
	0.2
	Download
	116
	111
	130
	100
	1.72

	
	
	Upload
	105
	109
	149
	90
	1.90

	
	
	Total Update
	222
	220
	260
	220
	1.80

Table B4 FTS=256 bytes

Now WEP key (128 bit) will be enabled and tests will be repeated again to measure the effect of using WEP for symmetric encryption.

TEST B-W1

This test is performed to evaluate the relationship between various sizes of data while using 128-bit WEP key and default values of RTS and FTS

Radio Card Parameters

· WEP Enabled (Key = “12345678901234567890ABCDEF”)

· FTS Threshold = 2312 bytes (Default)

· RTS Threshold = 2312 bytes (Default)

· Theoretical Throughput: ‘Auto Rate Selection’ (Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Access Point Parameters

· WEP Enabled (Key = “12345678901234567890ABCDEF”)

· FTS Threshold = 2312 bytes

· RTS Threshold = 2312 bytes

· Theoretical Throughput: 1, 2, 5.5, 11 (Mb/sec) all set to ‘basic’

(Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Plotted Results

[image: image42.wmf]Performance vs Data Size (WEP Enabled, FTS = RTS = 2312 Bytes)

0

0.5

1

1.5

2

2.5

3

3.5

4

0

5

10

15

20

25

Data Size (Mb)

Performance (Mb/s)

Download Mode

Upload Mode

Update Mode

Fig. B5 FTS=2312 bytes (WEP Enabled)

Test Data

	FTS = RTS

(Bytes)
	DATA

(Mb)
	MODE
	TIME (in milli-secs)
	Perf

(Mb/s)

	
	
	
	Avg
	Median
	Max
	Min
	

	2312

	22
	Download
	6990
	7010
	7090
	6809
	3.13

	
	
	Upload
	6994
	7060
	7490
	6760
	3.13

	
	
	Total Update
	13983
	14070
	14580
	13830
	3.13

	
	11
	Download
	3443
	3385
	3535
	3375
	3.19

	
	
	Upload
	3676
	3625
	3914
	3535
	2.99

	
	
	Total Update
	7118
	7010
	7431
	6960
	3.09

	
	8
	Download
	2587
	2644
	2714
	2423
	3.09

	
	
	Upload
	2497
	2403
	2794
	2253
	3.20

	
	
	Total Update
	5083
	5047
	5358
	4927
	3.14

	
	5
	Download
	1587
	1552
	1713
	1522
	3.15

	
	
	Upload
	1758
	1692
	2023
	1643
	2.84

	
	
	Total Update
	3344
	3244
	3645
	3224
	2.99

	
	2
	Download
	626
	620
	661
	601
	3.19

	
	
	Upload
	756
	782
	811
	711
	2.64

	
	
	Total Update
	1381
	1402
	1432
	1342
	2.89

	
	1
	Download
	317
	310
	341
	300
	3.15

	
	
	Upload
	361
	311
	500
	280
	2.77

	
	
	Total Update
	679
	621
	811
	610
	2.94

	
	0.5
	Download
	163
	160
	190
	150
	3.06

	
	
	Upload
	164
	291
	321
	119
	3.06

	
	
	Total Update
	328
	451
	491
	290
	3.05

	
	0.2
	Download
	70
	70
	120
	50
	2.85

	
	
	Upload
	56
	50
	91
	40
	3.57

	
	
	Total Update
	126
	120
	160
	120
	3017

Table B5 FTS=2312 bytes (WEP Enabled)

TEST B-W2

This test is performed to evaluate the relationship between various sizes of data while using 128-bit WEP key and FTS = 1500 bytes

Radio Card Parameters

· WEP Enabled (Key = “12345678901234567890ABCDEF”)

· FTS Threshold = 1500 bytes

· RTS Threshold = 2312 bytes (Default)

· Theoretical Throughput: ‘Auto Rate Selection’ (Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Access Point Parameters

· WEP Enabled (Key = “12345678901234567890ABCDEF”)

· FTS Threshold = 1500 bytes

· RTS Threshold = 2312 bytes

· Theoretical Throughput: 1, 2, 5.5, 11 (Mb/sec) all set to ‘basic’

(Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Plotted Results

[image: image43.wmf]Performance vs Data Size (WEP Enabled, FTS=1500, RTS=2312)

0

0.5

1

1.5

2

2.5

3

3.5

0

5

10

15

20

25

Data Size (Mb)

Performance (Mb/s)

Download Mode

Upload Mode

Update Mode

Fig. B6 FTS=1500 bytes (WEP Enabled)
Test Data

	FTS

(Bytes)
	DATA

(Mb)
	MODE
	TIME (in milli-secs)
	Perf

(Mb/s)

	
	
	
	Avg
	Median
	Max
	Min
	

	1500

	22
	Download
	7884
	7901
	8002
	7731
	2.79

	
	
	Upload
	7931
	7942
	8482
	7750
	2.77

	
	
	Total Update
	15815
	15843
	16403
	15673
	2.78

	
	11
	Download
	3897
	3876
	4016
	3835
	2.82

	
	
	Upload
	4126
	4065
	4366
	3965
	2.67

	
	
	Total Update
	8023
	7941
	8332
	7881
	2.74

	
	8
	Download
	2918
	3015
	3015
	2784
	2.74

	
	
	Upload
	2842
	2633
	3105
	2633
	2.81

	
	
	Total Update
	5760
	5648
	6058
	5598
	2.78

	
	5
	Download
	1792
	1753
	1923
	1732
	2.79

	
	
	Upload
	1953
	1922
	2113
	1862
	2.56

	
	
	Total Update
	3745
	3675
	3976
	3626
	2.67

	
	2
	Download
	710
	711
	741
	691
	2.81

	
	
	Upload
	822
	801
	881
	772
	2.43

	
	
	Total Update
	1531
	1512
	1582
	1502
	2.61

	
	1
	Download
	353
	350
	381
	340
	2.83

	
	
	Upload
	397
	361
	532
	320
	2.52

	
	
	Total Update
	750
	711
	882
	681
	2.67

	
	0.5
	Download
	180
	170
	200
	170
	2.77

	
	
	Upload
	188
	301
	350
	141
	2.66

	
	
	Total Update
	368
	471
	530
	331
	2.72

	
	0.2
	Download
	76
	80
	120
	50
	2.63

	
	
	Upload
	66
	60
	101
	50
	3.03

	
	
	Total Update
	142
	140
	171
	130
	2.81

Table B6 FTS=1500 bytes (WEP Enabled)

TEST B-W3

This test is performed to evaluate the relationship between various sizes of data while using 128-bit WEP key and FTS = 1000 bytes

Radio Card Parameters

· WEP Enabled (Key = “12345678901234567890ABCDEF”)

· FTS Threshold = 1000 bytes

· RTS Threshold = 2312 bytes (Default)

· Theoretical Throughput: ‘Auto Rate Selection’ (Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Access Point Parameters

· WEP Enabled (Key = “12345678901234567890ABCDEF”)

· FTS Threshold = 1000 bytes

· RTS Threshold = 2312 bytes

· Theoretical Throughput: 1, 2, 5.5, 11 (Mb/sec) all set to ‘basic’

(Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Plotted Results

[image: image44.wmf]Performance vs Data Size (WEP Enabled, FTS=1000, RTS=2312)

0

0.5

1

1.5

2

2.5

3

3.5

0

5

10

15

20

25

Data Size (Mb)

Performance (Mb/s)

Download Mode

Upload Mode

Update Mode

Fig. B7 FTS=1000 bytes (WEP Enabled)
Test Data

	FTS

(Bytes)
	DATA

(Mb)
	MODE
	TIME (in milli-secs)
	Perf

(Mb/s)

	
	
	
	Avg
	Median
	Max
	Min
	

	1000

	22
	Download
	7782
	7761
	7881
	7621
	2.83

	
	
	Upload
	7854
	7942
	8232
	7690
	2.80

	
	
	Total Update
	15636
	15703
	16113
	15542
	2.81

	
	11
	Download
	3842
	3845
	3936
	3795
	2.86

	
	
	Upload
	4080
	4026
	4387
	3946
	2.69

	
	
	Total Update
	7922
	7871
	8232
	7771
	2.78

	
	8
	Download
	2885
	2964
	2985
	2734
	2.77

	
	
	Upload
	2796
	2584
	3075
	2563
	2.86

	
	
	Total Update
	5681
	5548
	5978
	5528
	2.81

	
	5
	Download
	1769
	1752
	1863
	1693
	2.82

	
	
	Upload
	1929
	1913
	2143
	1823
	2.6

	
	
	Total Update
	3699
	3665
	3956
	3565
	2.7

	
	2
	Download
	700
	711
	721
	671
	2.85

	
	
	Upload
	817
	811
	871
	761
	2.45

	
	
	Total Update
	1517
	1522
	1572
	1482
	2.64

	
	1
	Download
	352
	350
	371
	340
	2.84

	
	
	Upload
	392
	341
	521
	320
	2.55

	
	
	Total Update
	744
	691
	861
	671
	2.69

	
	0.5
	Download
	176
	170
	191
	170
	2.84

	
	
	Upload
	189
	181
	349
	149
	2.65

	
	
	Total Update
	365
	351
	520
	340
	2.74

	
	0.2
	Download
	76
	80
	120
	51
	2.63

	
	
	Upload
	65
	60
	89
	40
	3.07

	
	
	Total Update
	140
	140
	160
	130
	2.85

Table B7 FTS=1000 bytes (WEP Enabled)

TEST B-W4

This test is performed to evaluate the relationship between various sizes of data while using 128-bit WEP key and FTS = 1000 bytes

Radio Card Parameters

· WEP Enabled (Key = “12345678901234567890ABCDEF”)

· FTS Threshold = 256 bytes

· RTS Threshold = 2312 bytes (Default)

· Theoretical Throughput: ‘Auto Rate Selection’ (Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Access Point Parameters

· WEP Enabled (Key = “12345678901234567890ABCDEF”)

· FTS Threshold = 256 bytes

· RTS Threshold = 2312 bytes

· Theoretical Throughput: 1, 2, 5.5, 11 (Mb/sec) all set to ‘basic’

(Default)

· Channel Used = 6 (2437 MHz)

· Antenna Transmit Power = 100 mW (Default)

Plotted Results

[image: image45.wmf]Performance vs Data Size (WEP Enabled, FTS=1, RTS=2312)

1.4

1.5

1.6

1.7

1.8

1.9

2

0

5

10

15

20

25

Data Size (Mb)

Performance (Mb/s)

Download Mode

Upload Mode

Update Mode

Fig. B8 FTS=256 bytes (WEP Enabled)

Test Data

	FTS

(Bytes)
	DATA

(Mb)
	MODE
	TIME (in milli-secs)
	Perf

(Mb/s)

	
	
	
	Avg
	Median
	Max
	Min
	

	256

	22
	Download
	12216
	12227
	12278
	12168
	1.80

	
	
	Upload
	12491
	12568
	12589
	12408
	1.76

	
	
	Total Update
	24708
	24795
	24795
	24605
	1.78

	
	11
	Download
	6096
	6079
	6149
	6068
	1.80

	
	
	Upload
	6308
	6269
	6550
	6149
	1.74

	
	
	Total Update
	12404
	12348
	12668
	12298
	1.77

	
	8
	Download
	4530
	4577
	4636
	4417
	1.76

	
	
	Upload
	4417
	4266
	4667
	4236
	1.81

	
	
	Total Update
	8948
	8843
	9183
	8832
	1.78

	
	5
	Download
	2788
	2774
	2874
	2744
	1.79

	
	
	Upload
	2897
	2854
	3084
	2824
	1.73

	
	
	Total Update
	5685
	5628
	5868
	5598
	1.76

	
	2
	Download
	1115
	1112
	1131
	1102
	1.79

	
	
	Upload
	1194
	1201
	1243
	1171
	1.67

	
	
	Total Update
	2308
	2313
	2364
	2283
	1.73

	
	1
	Download
	561
	550
	581
	550
	1.78

	
	
	Upload
	586
	562
	691
	521
	1.70

	
	
	Total Update
	1147
	1112
	1252
	1101
	1.74

	
	0.5
	Download
	284
	280
	291
	280
	1.76

	
	
	Upload
	285
	351
	410
	259
	1.75

	
	
	Total Update
	569
	631
	701
	550
	1.75

	
	0.2
	Download
	119
	120
	141
	100
	1.68

	
	
	Upload
	109
	110
	131
	89
	1.83

	
	
	Total Update
	228
	230
	251
	220
	1.75

Table B8 FTS=256 bytes (WEP Enabled)

Note

Similar tests were performed varying RTS and similar results were obtained. WEP has negligible impact on performance of 802.11b wireless networks.

Appendix C

802.11b Performance Evaluation

Yasir Zahur, Murtaza Doctor, Sadegh Davari, T. Andrew Yang

University of Houston Clear Lake

2700 Bay Area Blvd., Houston, TX 77058

USA
Abstract
In this paper, the impact of various key parameters on the actual performance of 802.11b wireless LAN protocol is verified by a series of controlled experiments. Overall, four sets of independent experiments were conducted to test the respective effect of one or more parameters on the performance of the 802.11b network. The parameters considered in our experiments included distance and power, Wired Equivalent Privacy (WEP), Fragmentation Threshold Setting (FTS), and Request To Send / Clear To Send (RTS/CTS). Lessons that we have learned from the series of experiments are discussed in the paper.

Keywords

Wireless LAN, IEEE 802.11b, Performance Evaluation

1. Introduction

High-speed wireless local area networks (WLAN) can provide the benefits of network connectivity without the restrictions of being tied to a location or restrained by wires. Despite the convenience of mobility, in order for the WLAN to be adopted as part of an enterprise network, two primary issues must be addressed: performance and security. The most widely implemented WLAN protocol, IEEE 802.11b, is claimed to have transfer rates of up to 11Mbps. However the actual performance demonstrated has been much lower than what is stated by the standard.
Our study has focused on evaluating the performance of the 802.11b WLAN, by studying the impact of parameters such as Wired Equivalent Privacy (WEP), physical distance, Request to Send/ Clear to Send (RTS/CTS), Fragmentation Threshold (FTS) and power variations. The rest of the paper includes a brief survey of the medium access control (MAC) and physical layers of the 802.11b standard, network architectures, configurations and the result of the performance evaluation experiments.

2. 802.11b Architecture
WLANs allow wireless stations to communicate with each other and to access the network using radio waves as the conduction medium. A WLAN, in Infrastructure mode, consists of a central connection point called the Access Point (AP), analogous to a hub or switch in a wired LAN. The AP transmits data between various nodes of a WLAN and, in most cases, serves as the only link between the WLAN and the wired network.
The 1999 version of the IEEE 802.11 WLAN Standards defines three types of wireless networks [5]:

[image: image46.emf]Mobile-AMobile-B

Figure 1: Ad-hoc Mode (IBSS)

An Independent Basic Service Set (IBSS) is commonly referred to as an Ad Hoc Network. As shown in Figure 1, an IBSS consists of end nodes communicating without any AP. The IBSS mode is useful for quickly setting up a wireless network, such as for a group meeting, at a convention center, or at an airport, etc.

[image: image47.jpg]
Figure 2: Infrastructure Mode (BSS)
A Basic Service Set (BSS) is commonly referred to as an Infrastructure Network. A BSS consists of a single AP, as shown in Figure 2. All the communications between any two nodes must pass through the AP. The coverage area is greatly increased as compared to an IBSS.

An Extended Service Set (ESS), as shown in Figure 3, consists of multiple BSSs, each having a single AP. The APs are linked together to form a LAN.

[image: image48.jpg]
Figure 3: Extended Service Set (ESS)

2.1 802.11b MAC Architecture
The latest 802.11b standard [1] is designed using Direct Sequence Spread Spectrum (DSSS) WLAN system which in turn uses a complementary code keying (CCK) modulation scheme. Overall, the symbol rate for CCK is 1.375 Mega samples/sec with a chipping rate of 11 Mega chips/sec for 8 bits per symbol. This translates into a data rate of 11 Mbps. CCK was chosen over other modulations for its superior performance when combating multi-path. CCK is a form of vector modulation and a variation of M-ary orthogonal keying (MOK) modulation which uses In-Phase and Quadrature (I&Q) modulation with complex symbol structures.
Figure 4 shows the 802.11 protocol stack. As with IEEE 802.3 standard, the MAC layer defined by IEEE 802.11 standard is the lower part of the data link layer and is placed between the physical layer and Logical Link Control (LLC) sub layer of the data link layer.

[image: image49.emf]Application

Presentation

Session

Transport

Network

Data

 Link

Physical

TCP

IP

Logical Link Layer (LLC)

Media Access Layer (MAC) -

Power, Security etc

FH, IR, DSS,CCK(b), OFDM(a)

802.11

NOS

Network OS

Figure 4: 802.11 Protocol Stack

 The MAC layer consists of two coordination functions: Distributed Coordination Function (DCF) and Point Coordination Function (PCF) as shown in Figure 5.

DCF is implemented in individual stations and is used in IBSS and other wireless network configurations as the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). For a station to transmit, it shall sense the medium to determine if another station is transmitting. If the medium is not determined to be busy, the transmission may advance. The CSMA/CA distributed algorithm mandates carefully designed waiting periods and medium reservation using a special timer called Network Allocation Vector (NAV).

In the 802.11b MAC layer, PCF is located above DCF and the access algorithm for this level is based on circular polling from an access point, that is, deterministic access. This mechanism allows transmission of traffic that does not tolerate random and unbounded delays or contention-free asynchronous traffic.

[image: image50.emf]Point

Coordination

Function(PCF)

 Distribution Coordination Function

(DCF)

Required For Contention

Free Services

MAC Extent

Used for Contention

Services and basis for

PCP

Figure 5: 802.11 MAC Architecture

802.11 standard further embodies the RTS/CTS feature to control the station’s access to the radio medium. The primary reason for implementing RTS/CTS is to minimize collisions among hidden stations. An example of this is the hidden node problem, which can disrupt communications in a highly loaded WLAN. Take a scenario where stations A and B can communicate, however, station C is unable to receive from station A because of an obstruction and thus can not determine when the channel is busy. Both stations A and C may simultaneously attempt to transmit to station B, which causes lost packets and subsequent retransmissions. Use of RTS, CTS, DATA and ACK sequences can be used to prevent this type of problem. More details about the hidden node problem and the effects of RTS/CTS are discussed in section 3.4.
3. Performance Evaluation Experiments and Results

Configuration parameters used for various test machines in the performance experiments are listed in Table 1.

	
	Desktop1
	Desktop2
	Laptop1
	Laptop2

	CPU
	Intel based PII 400 MHz
	Intel based PII 400 MHz
	Intel based P III 750 MHz
	Intel based P III 750 MHz

	OS
	Windows 2000 Professional
	Windows 2000 Server
	Windows XP
	Windows 2000 Professional

Table 1: Stations used in the Experiments

All the four machines are equipped with 256 MB RAM, Cisco Aironet 350 WLAN adapters, and the Cisco Aironet client utility software. All machines run windows operating systems and J2SDK v 1.4.1. The two desktops are Pentium II machines running Windows 2000 Professional or Server, while the two laptops are Pentium III machines running Windows 2000 Professional or XP.

The access point used in the experiments was a Cisco Aironet 350 series access point with 802.11b as the network standard. The frequency band used was 2.4 to 2.497GHz; wireless medium used was DSSS and access mechanism being CSMA/CA. All experiments were performed with 100mW as transmit power (except in the power test where both 100mW and 30mW were used) and antenna at 9Dbi.

Terminologies Used

Round trip time for a particular data size is the time required for a packet carrying that size of data to travel from one host to the other and come back to the original host. It is measured in milliseconds. Throughput is the average rate at which the data travels between two users and is usually measured in kbps or Mbps. It should also be noted that the throughput is measured at the Application level to reflect as accurately as possible the performance that is actually experienced by the end user. This, however, implies that throughput does depend on the underlying transmission protocol (TCP or UDP) and data type being sent (i.e., HTTP, FTP, VoIP, etc). Data bandwidth is the maximum theoretical throughput or data rate at which data can be transmitted over the network.

3.1. Effect of Distance (Range Test) and Power

Distance and power are vital factors in evaluating the performance of 802.11b protocol. Distance can be tested by moving the wireless clients to locations with different distances from the AP. Power is a controllable attribute on the AP as well as on the clients’ WLAN adapters.

Test Setup

[image: image51.jpg]
Figure 6: Configuration of Experiments for Range and Power Level Tests

As shown in Figure 6, the vital part of the testing was the use of a hybrid network which consisted of both an enterprise network and a wireless LAN. All machines were configured for dynamic IP addresses (DHCP). The access point was plugged into the networks switch and also configured for DHCP.

The WLAN consisted of approximately 40 machines. The access point was configured as an entity by itself and connected to the WLAN using a Netgear Fast Ethernet switch. All desktops as shown in the figure were connected to the wired LAN. Laptop1 and Laptop2 were wireless clients associated with the access point.

Testing Software

Network monitoring software, including Netperf and Qcheck, were used to perform the range and power tests. They establish two connections before actually testing the throughput. The first connection is responsible for exchanging control information and the second connection is actually used to test throughput using sample-sized packets. Regardless of the type of test being run, the control connection will be a TCP connection using BSD sockets. The software are claimed to conduct tests with 99% confidence level and have been used as testing software in various test laboratories.

Testing Cases
Case 1: Hybrid Transmissions

This case was tested using the hybrid network. Test data was sent from Laptop1 to Desktop1 in this case. The data transfer occurred partly on the WLAN and partly on the wired LAN. This is a distance test where Laptop1 was tested at various distances from the AP. The test was conducted for TCP and UDP protocols at 5, 15 and 50 feet away from the AP, making the 802.11b radio signals go through walls and around corners. The results of these tests are shown in Figure 7. Solid curves represent the throughput at different distances for TCP, and dotted curves represent the results for UDP at different distances. Distances are distinguished by colors (red – 5 ft, blue – 15 ft, and green – 50 ft).
Case 2: Wireless Transmissions

This test was conducted between Laptop1 and Laptop2. Data transmission occurred in a purely wireless environment. The results of these tests are shown in Figure 8.
Case 3: Power Test

This case was used to test throughput at different power levels at 50 feet away from the AP in the wireless environment between Laptop1 and Laptop2. The lines in Figure 9 indicate the performance results respectively at 30mW (dotted line) and 100mW (solid line) power levels.

Observation

The range tests were conducted on hybrid and wireless models. Looking at the results shown in Figures 7 and 8, we can easily conclude that as the distance was increased the throughput significantly dropped. In the case of hybrid model, the throughput was comparatively higher since half of the transmission was carried over a wired network. This proves that, as a client station moves away from the access point, the WLAN performance deteriorates due to decrease in signal strength.

In the case of power test, which was conducted at two power levels (the default 100mW and 30mW), the experiment indicated the higher the power level is the better the throughput. The default power on the access point and the wireless adapter cards is 100mW, which is the maximum possible power.

[image: image52.wmf]Range Test (Hybrid Model)

0

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

9

10

Iteration

Throughput

TCP-5 feet

UDP-5 feet

TCP-15 feet

UDP-15 feet

TCP-50 feet

UDP-50 feet

Figure 7:Result of Range Tests

[image: image53.wmf]Range Test (Wireless Model)

0

0.5

1

1.5

2

2.5

3

3.5

1

2

3

4

5

6

7

8

9

10

Iterations

Throughput

TCP- 5 feet

UDP-5 feet

TCP- 15 feet

UDP-15feet

TCP-50feet

UDP-50feet

Figure 8: Result of Range Tests (wireless)

[image: image54.wmf]Power Testing

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

1

2

3

4

5

6

7

8

9

10

Iterations

Throughput

Power

30mW

Power

100mW

Figure 9:Result of Power Tests

3.2. Effect of WEP

WEP is defined in the 802.11b standard as the optional encryption standard for WLANs. It is implemented in the 802.11 MAC layer and is based on RC4 encryption algorithm, which is a symmetric stream cipher where both the client station and the target station share the same key for both encryption and decryption. An Initialization vector (IV) is used to avoid encrypting two cipher texts with the same key stream and to produce a different RC4 key for each packet. However a lot of concerns were raised later regarding the effectiveness of WEP. Fluhrer, Mantin and Shamir described a passive ciphertext-only attack against RC4 as used in WEP [2]. Moreover, according to various other research publications, the vulnerability of WEP roots from its Initialization Vector and not from its smaller key size [3]. Later on an actual WEP connection was successfully attacked and the key was retrieved [4].

Test Setup

Configuration of the experiments to study the effect of WEP is illustrated in Figure 10. It consisted of two wireless desktops and an access point (AP) in infrastructure mode. A socket based client-server Java program was used to measure the round trip time and the throughput. Each test sends the data back and forth 50 times (for every data size) and then the average value of round trip time is calculated for determining the throughput. Data sizes used were 1, 2, 5, 8, 11, 22 Mbits. Cisco Aironet 350 series client adapters support 40-bit and 128-bit static WEP keys. We used the 128-bit key while conducting the experiments. The tests were performed using different values of FTS and RTS with WEP disabled and then the same set of values with WEP enabled.

[image: image55.png]
Figure 10. Configuration of WLAN experiments

Test Results

Figure 11 shows the effect of WEP on performance, when FTS = RTS = 2,312 bytes (the default). Similar results were obtained with different combinations of values of RTS and FTS.

[image: image56.png]
Figure 11. Effect of WEP on WLAN Performance

In Figure 11, the dashed line signifies the variations in throughput with WEP enabled, while the solid line indicates the throughput in the case without WEP being enabled. As shown in the figure, throughput essentially remains constant and the difference is less than 0.1 MB for the given data sizes and test conditions. Considering the volatile nature of wireless networks, this difference can be attributed towards occasional RF based interferences.

Observation

Encryption and decryption are typically resource-intensive and thus time-consuming processes. However as is clear from the above results, we can safely proclaim that WEP has virtually no effect on the overall throughput of WLANs. WEP is implemented in the 802.11 MAC layer. It is implemented as a firmware in the Cisco adapter. In addition to high performance, implementing the WEP algorithm as a firmware brings forth the advantage of easy updates. For example, improved security features for WEP, like Temporal Key Integrity Protocol (TKIP) and WPA (Wi-Fi Protected Access), can be applied simply by upgrading the firmware.

3.3. Effect of FTS

The 802.11 wireless stations can use the optional feature of fragmentation to divide a large data frame into smaller fragments, which are then sent independently to the destination. Fragmentation allows a network operator to define a MAC Service Data Unit (MSDU) across networks of varying MAC protocol Data Units (MPDU). Fragmentation is determined by the Fragmentation Threshold Parameter (FTS). FTS exists in the MAC layer. Unlike wired networks, most wireless network adapter cards allow us to change the FTS parameter. Any frames larger than the FTS value will be divided into smaller fragments. 802.11 networks suffer more interferences than traditional wired networks. Most of these are RF based interferences of short duration but of high-energy bursts. Thus sending greater number of smaller frames instead of smaller number of larger frames helps to lessen the data loss and retransmission delays especially in a wireless network experiencing heavy interference.

Test Setup

Configuration of the experiments testing the effect of FTP is the same as the WEP experiments, including the configuration of the devices, the performance calculation software, and the data sizes. The tests were performed by varying the value of FTS for the whole set of data sizes. The values of FTS included 256, 1000, 1500 and 2312 bytes. The value of RTS was kept at its default i.e., 2312 bytes and the WEP was disabled.

Test Results

As shown in Figure 12, for the given data sizes and test conditions, FTS is directly proportional to the throughput. The greater the value of FTS, the larger the throughput is.

[image: image57.png]

Figure 12. Effect of FTS on WLAN Performance

Observation

The default FTS value for Cisco Aironet 350 series client adapters is 2312 bytes. However depending on the network conditions and magnitude of interference, this value should be fine-tuned to achieve high performance. Higher value of FTS means there would be lesser overhead (since there would be lesser fragments), however its frame retransmission is more expensive. Lower value of FTS imparts greater fragmentation overhead, however it proves to be more efficient if the network is facing more interference, which may cause more retransmissions.

In our case the tests were performed in a controlled environment with limited RF interferences including interferences from other access points and wireless networks. The result was a lesser number of damaged frames and thus very low frame retransmission rate. This claim is validated by the obtained results. The throughput is much greater with a higher FTS value because the overhead of sending multiple smaller frames was not present. As we reduced the value of FTS, the throughput started to drop significantly. This is because for the same data size, the client adapter was sending greater number of frames. Thus the overhead was greatly increased. On the other hand, due to better network conditions, there were only few losses due to collisions and interference and although the retransmission delays in such cases were small, the increased overhead was far greater than retransmission savings.

3.4. Effect of RTS-CTS

This experiment tests the RTS/CTS mechanism which is part of the MAC layer specification. The RTS/CTS mechanism involves exchange of frames before the actual data is sent. The RTS and CTS frames contain a Duration ID field that defines the period of time that the medium is to be reserved to transmit the actual data frame and the returning ACK frame. All stations within the reception range of either the originating station (which transmits the RTS) or the destination station (which transmits the CTS) shall learn of the medium reservation. Thus a station may not be able to receive from the originating station, yet still know about the impending use of the medium to transmit a data frame.

Stations receiving the RTS or CTS will set their virtual Carrier Sense indicator NAV for the given duration, and will use this information together with the PHY Carrier Sense when sensing the radio medium. RTS/CTS attribute may be set on a per-station basis and on the AP.

Test Setup

Figure 13 shows the test setup used in this experiment.

[image: image58.jpg]
Figure 13. Configuration for RTS/CTS Tests

In this experiment the motive was to simulate the hidden node problem in the infrastructure mode. Hidden node is the one which is outside the transmission range of the sender but within the range of the receiver. When a transmission has already begun, this node has no way to find this out and senses the medium to be idle and transmits its own data. However, as the node which was receiving the ongoing data is within the range, there will be a collision at the receiver.

Hidden node problem was mimicked using multiple machines, L1, L2 and D1 each capable of generating network traffic. L1 and L2 were placed in a manner where they weren’t able to sense each other in the Ad-hoc mode; however they could communicate with each other via the AP1 in the Infrastructure mode as depicted in Figure 13.

In this experiment a sample client server java program was used to measure throughput between the stations by sending configurable size data packets from one station to another. This controlled piece of software was written to solely test the effect of RTS/CTS in the simulated hidden node problem.

Case A:

Base case with basic throughput measurement and without traffic generation. Setup involved L1 running the client java program, D1 running the server java program and L2 just transmitting management frames.

Case B:

In this case L2 was generating traffic in the form of file transfer aimed towards D1. D1 and L1 were running the client server programs similar to case-1.

Case C:

In this case both L1 and L2 were generating traffic towards D1. D1 and L1 assumed the same roles as the above two cases.

Test Result

	Data size
	Case A
	Case B
	Case C

	512
	120.15
	6.42
	3.57

	1024
	118.73
	17.59
	7.16

	2048
	126.54
	25.33
	10.75

	4096
	178.09
	30.93
	27.77

	8192
	157.07
	58.73
	47.05

	Data size
	
	% of decrease from A to B
	% of decrease from B to C

	512
	
	95%
	44%

	1024
	
	85%
	59%

	2048
	
	80%
	58%

	4096
	
	83%
	10%

	8192
	
	63%
	20%

Table 2: Result from RTS-CTS Experiments, with RTS Threshold = 2,312 bytes

[image: image59.png]
Figure 14. Effect of RTS-CTS at 2,312 Bytes

[image: image60.png]
Figure 15. Effect of RTS-CTS at 1,000 Bytes

Observation

The RTS/CTS mechanism need not be used for every data frame transmission. Because the additional RTS and CTS frames add overhead inefficiency, the mechanism is not always justified, especially for short data frames.

It is clear from Figures 14 and 15 that RTS-CTS mechanism does have a significant effect upon the throughput, especially when the wireless network has higher probability of collisions. Consider Figure 14 where FTS = RTS = 2312 bytes; the data frames of size less than 2312 bytes (i.e. 512, 1024, 2048) were not proceeded by RTS packets in all the three cases. Therefore in table 1, if we consider the difference in throughput for case B (where only laptop2 was generating traffic towards desktop1) and case C (where both laptops were generating traffic thus effectively increasing the chances of collision), there is much significant drop in throughput for data sizes less than RTS threshold than the data sizes greater than RTS threshold. For data sizes greater than RTS threshold, throughput remained quite similar and the small drop in throughput can be attributed more towards the increase in traffic and thus resulting network congestion. Same arguments apply to Figure 15 where RTS = FTS = 1000 bytes.

Figure 16 shows the decrease of performance respectively from case A to B and from case B to C. In both scenarios, when data size is greater than the RTS Threshold, the drop in performance are less significant than when data size is less than the RTS Threshold. Another observation is that the performance drop is significant when traffic is introduced into the network (that is, from case A to B), but once traffic is introduced, the addition of more traffic (e.g., from case B to C) does not have as significant negative impact on the performance. The above two observations lead us to the conclusion that the performance of WLAN may not be satisfying when heavy traffic is present in the network.

[image: image61.png]
Figure 16. Change of Performance between Cases
4. Conclusion

In this paper we have studied the effect of various key parameters of IEEE 802.11b WLAN protocol on its performance in particular. The parameters we considered included: Distance and Power, Wired Equivalent Privacy (WEP), Fragmentation Threshold (FTS), and Request To Send / Clear To Send (RTS/CTS). For the Distance and Power we utilized two existing testing software on a hybrid network of WLAN and LAN. For the rest, we applied our own testing software, written in Java. A summary of our observation follows: For the Distance, the farther we are away from the AP, the lower is the performance. For the Power, the higher the power the better the performance is. The effect of WEP on the overall throughput was minimal. For FTS, the higher the value the smaller the overhead is, but in high interference environment with large re-transmissions, smaller value of FTS has advantage over large values. For RTS/CTS, we concluded that the overhead is high and it should not be used for transmission of every frame, unless the additional ovrhead is justified by the requirement of the application.

Acknowledgement

Zahur and Yang are partially supported by the Faculty Research Support Fund (#786, #817) of University of Houston Clear Lake (UHCL). Davari, Doctor and Yang were partially supported by the High Technology Laboratory (High Tech Lab) and by the Research Institute for Computing and Information Systems (RICIS) at UHCL. The High Tech Lab also provided some of the equipment used in the experiments.

References
[1] ANSI/IEEE, 802.11: Wireless LAN Medium Access Control (MAC) Physical Layer (PHY) Specifications, 2000.

 [2] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algorithm of RC4. In Eighth Annual Workshop on Selected Areas in Cryptography, Toronto, Canada, Aug. 2001.

[3] Jesse R. Walker, “Unsafe at any key size - an analysis of the WEP encapsulation”, 802.11 Security Papers at NetSys.com, Oct. 27, 2000.

http://www.netsys.com/library/papers/walker-2000-10-27.pdf
[4] Stubblefield, Ioannidis, Rubin, “Using the Fluhrer, Mantin, and Shamir attack to break WEP” http://philby.ucsd.edu/~bsy/ndss/2002/html/2002/papers/stubbl.pdf
[5] J. Vollbrecht, D. Rago, and R. Moskowitz. Wireless LAN Access Control and Authentication. A white paper from Interlink Networks Resource Library, 2001. http://www.interlinknetworks.com/images/resource/WLAN_Access_Control.pdf
Appendix D

Setting Up VPN Connection

D.1
Setting Up VPN Server

1.
Goto Start -> Settings -> Network and Dial-up Connections

[image: image62.png]
2.
Right click anywhere on the white space and choose New Connection from the context menu. Network Connection Wizard will start.

[image: image63.png]

3.
Click Next to choose the network connection type. Choose 'Accept Incoming Connections'.

[image: image64.png]
4.
Click Next on the following screen.

[image: image65.png]
5.
Choose ‘Allow virtual private connections’ as shown in the following screen.

[image: image66.png]
6.
Click Next. Now you can choose user accounts that can connect to this computer.

[image: image67.png]
7.
Click Next to configure TCP/IP protocol as shown below.

[image: image68.png]
8.
Choose TCP/IP. Then click Properties. Following screen will appear. Enter the IP Address range that will be assigned to the incoming VPN Clients (after they are authenticated).

[image: image69.png]
9.
Click OK and then Next. Following screen will be displayed.

[image: image70.png]
10.
Click Finish to complete the wizard.

11.
Now the 'Network and Dial-up Connections' console will have 'Incoming Connections' icon as well as shown below.

[image: image71.png]
12. Double clicking on the connection icon will display the properties window for this connection as shown below.

[image: image72.png]

Now we have a functional Wireless VPN Server that uses MPPE (128 bit) for data encryption and PPTP as the tunneling protocol.

13.
Using ipconfig/all command at the command prompt, its clear that a VPN Server dial in virtual interface has been created and assigned an IP address of 192.168.100.230 from the TCP/IP address pool that I created earlier.

[image: image73.png]
14.
When a VPN client gets connected, the display in the 'Network and Dial-up Connections' console changes to connected user name as following

[image: image74.png]
D.2
Setting Up VPN Client

1.
Go to Start -> Settings ->Network Connections.

[image: image75.png]
2. Click ‘Create a new connection’ link in Network Tasks window. New Connection wizard starts.

[image: image76.png]
3. Click Next and then choose ‘Connect to the network at my workplace’.

[image: image77.png]
4. Click Next to choose ‘Virtual Private Network Connection’

[image: image78.png]
5. Click Next to choose a name for this connection.

[image: image79.png]
6. Click Next to choose the VPN server’s IP address

[image: image80.png]
7. Choose Next to finish the wizard.

[image: image81.png]
8. Goto Start -> Settings ->Network Connections.

[image: image82.png]
9. Right click on the VPN_Client_Connection icon and click Properties.

[image: image83.png]
10. Then choose Networking tab and TCP/IP protocol.

[image: image84.png]
11. Click Properties button.

[image: image85.png]
12. Click ‘Advanced’ button. Since I am connecting only to a single system via VPN connection (i.e. the VPN Server itself), uncheck the default gateway checkbox and click OK.

[image: image86.png]
D.3
Connecting To VPN Server

1. Double click on the Virtual Private Connection icon. Following screen would pop up. Enter username and password. This must be a valid Windows based login name and password on the VPN Server. You can also choose to save this username and password for yourself only or for all the users.

[image: image87.png]
2. Click Connect to get connected to the VPN server. You can view the connection summary by double clicking on VPN Connection icon in the task bar.

[image: image88.png]
3. Click on Details tab. Following screen would appear. Its clear from this screen that we are using MPPE 128 bit encryption. Moreover a virtual VPN adapter has been created both on server and client computers with IP addresses 192.168.100.240 and 192.168.100.241 respectively.

[image: image89.png]
4. Above details can also be proved by using IPCONFIG/ALL command as shown below.

[image: image90.png]
Appendix E

Source Code Listings

This appendix provides the source codes for various java programs. Each listing is referenced by its Listing No from the main body of the report.

Listing No 1
Server.java

import java.io.*;

import java.net.*;

import javax.swing.*;

import java.util.*;

class Server {

public static void main(String argv[]) throws Exception

{

// creating server socket that will listen for client connections

ServerSocket welcomeSocket = new ServerSocket(9000);

System.out.println("Server started");

int dataSize = Integer.parseInt(JOptionPane.showInputDialog(null, "Enter data

size: (in bytes)", "Test", JOptionPane.INFORMATION_MESSAGE));

for(int i=0; i<50; i++) {

// preparing data to be downloaded to client

byte[] sendBuffer = new byte[dataSize+1];

long t1, t2, updateTime = 0;

for(int j=0; j<(dataSize-1); j++){

sendBuffer[j] = 'Y';

}

sendBuffer[dataSize] = '\n';

// accepting a client connection

Socket clientSocket = welcomeSocket.accept();

DataOutputStream outToClient = new

DataOutputStream(clientSocket.getOutputStream());

outToClient.write(sendBuffer, 0, dataSize+1);

BufferedReader inFromClient =

new BufferedReader(new

InputStreamReader(clientSocket.getInputStream()));

String reply = inFromClient.readLine();

outToClient.write(sendBuffer, 0, dataSize+1);

outToClient.close();

inFromClient.close();

clientSocket.close();

}
//end of for loop

System.exit(0);

}
// end of main method

}
// end of class
Listing No 2
Client.java

import java.io.*;

import java.net.*;

import javax.swing.*;

class Client {

public static void main(String argv[]) throws Exception

{

for (int i=0; i<50; i++){

// various time calculations

long t1, t2, t3, t4, downloadTime, uploadTime, totalUpdateTime, clientProcessingTime = 0;

// creating socket connection with server

Socket clientSocket = new Socket("200.0.0.2", 9000);

BufferedReader inFromServer =
 new BufferedReader(new

InputStreamReader(clientSocket.getInputStream()));

t1 = System.currentTimeMillis();

// downloading the data

String reply = inFromServer.readLine();

t2 = System.currentTimeMillis();

DataOutputStream outToServer = new DataOutputStream(clientSocket.getOutputStream());

// preparing data to be uploaded to the server

byte[] sendBuffer = new byte[reply.length()+1];

for(int j=0; j<reply.length()-1; j++){

sendBuffer[j] = 'r';

}

sendBuffer[reply.length()] = '\n';

// starting to measure round trip time

t3 = System.currentTimeMillis();

outToServer.write(sendBuffer, 0, reply.length()+1); // data upload

String reply2 = inFromServer.readLine();

t4 = System.currentTimeMillis();

downloadTime = t2 - t1;

totalUpdateTime = t4 - t3;

uploadTime = totalUpdateTime - downloadTime;

// writing the results in a text file

writeResults(downloadTime, uploadTime, totalUpdateTime);

// performing house keeping work

outToServer.close();

inFromServer.close();

clientSocket.close();

} // end of for loop

 }
// end of main method

//**

// This method writes results in a text file called 'output.txt'

public static void writeResults(long downloadTime, long uploadTime, long totalUpdateTime){

FileOutputStream fout = null;

PrintStream p = null;

try{

String outputFile = "Output.txt";

fout = new FileOutputStream(outputFile, true);

p = new PrintStream(fout);

}

catch(Exception ioe) {

System.out.println("IO Exception occured");

}

p.println(downloadTime + " " + uploadTime +" "+ totalUpdateTime);

p.flush();

p.close();

}

//***

}
// end of class definition

Listing No 3
Calculations.java
import java.io.*;

import javax.swing.*;

import java.util.*;

class Calculations {

// Vectors to store respective values

Vector downloadTime = new Vector();

Vector uploadTime = new Vector();

Vector totalUpdateTime = new Vector();

public static void main(String argv[]) throws Exception

{

String finalDisplay = "";

String thisLine = "";

String[] temp = new String[3];

Calculations c = new Calculations();

FileInputStream fin = new FileInputStream("output.txt");

BufferedReader d = new BufferedReader(new InputStreamReader(fin));

while ((thisLine = d.readLine()) != null) {

temp = thisLine.split(" ");

c.downloadTime.add(temp[0]);

c.uploadTime.add(temp[1]);

c.totalUpdateTime.add(temp[2]);

}

finalDisplay = "\n Total No Of Tests: " + c.downloadTime.size() + "\n\n";

for(int i=0; i<3; i++){

if(i==0)

finalDisplay += c.calculateResults("downloadTime");

if(i==1)

finalDisplay += c.calculateResults("uploadTime");

if(i==2)

finalDisplay += c.calculateResults("totalUploadTime");

}

JTextArea jt = new JTextArea(finalDisplay);

JOptionPane.showMessageDialog(null,jt, "Final Results",

JOptionPane.INFORMATION_MESSAGE);

System.exit(0);

}
// end of main

//**

public String calculateResults(String s){

int sum = 0;

double average = 0.0d;

int max = 0;

int min = 0;

int median = 0;

Vector v = new Vector();

String display = "";

if(s.equals("downloadTime"))

v = downloadTime;

else if(s.equals("uploadTime"))

v = uploadTime;

else

v = totalUpdateTime;

for(int i=0; i<v.size(); i++){

int currentValue = Integer.parseInt((String) v.get(i));

if(i == 0){

max = currentValue;

min = currentValue;

}

else{

if(currentValue > max){

max = currentValue;

}

if(currentValue < min){

min = currentValue;

}

}

sum = sum + currentValue;

}
//end of for loop

average = (double) sum / v.size();

median = Integer.parseInt((String) v.get(v.size()/2));

display = " " + s.toUpperCase() + "\n" + " **************************\n";

display +="\n Average: " + average + "\n Median: " + median + "\n Max: " +

 max + "\n Min: " + min;

display += "\n\n";

return display;

}
//end of calculateResults method;

//**

}
// end of class

Listing No 4
SSL_Client.java

// Importing the necessary packages

import java.io.*;

import java.net.*;

import javax.net.ssl.*;

//Begin of class definition

class SSL_Client {

private static final int port = 9000;

private static final String server = "192.168.100.216";

public static void main(String argv[]) throws Exception

{

int dataSize = 0;

if(argv.length < 1) {

System.out.println("Usage: [Data Size in bytes]");

System.exit(1);

}

else{

dataSize = Integer.parseInt(argv[0]);

}

SSLSocketFactory ssf = (SSLSocketFactory) SSLSocketFactory.getDefault();

// preparing data to be uploaded to the server

byte[] sendBuffer = new byte[dataSize];

for(int j=0; j<sendBuffer.length; j++){

sendBuffer[j] = 'r';

}

// starting to measure round trip time

long t1 = System.currentTimeMillis();

Socket s = ssf.createSocket(server, port);

DataOutputStream outToServer = new DataOutputStream(s.getOutputStream());

DataInputStream inFromServer = new DataInputStream(s.getInputStream());

// sending the data

outToServer.write(sendBuffer, 0, sendBuffer.length); // data upload

outToServer.flush();

// downloading the data

inFromServer.read(sendBuffer);

long t2 = System.currentTimeMillis();

System.out.println("Round Trip Time : " + (t2-t1));

// performing house keeping work

outToServer.close();

inFromServer.close();

s.close();

}
// end of main method

//***

}
// end of class definition
Listing No 5
SSL_Server.java
import java.io.*;

import java.net.*;

import java.util.*;

import javax.net.ssl.*;

// Start of class definition

public class SSL_Server {

private static final int port = 9000;

public static void main (String[] argv) throws Exception {

int dataSize = 0;

if(argv.length < 1) {

System.out.println("Usage: [Data Size in bytes]");

System.exit(1);

}

else{

dataSize = Integer.parseInt(argv[0]);

}

SSLServerSocketFactory ssf = (SSLServerSocketFactory)

SSLServerSocketFactory.getDefault();

ServerSocket ss = ssf.createServerSocket(port);

System.out.println("Server started at port no: " + port);

byte[] receiveBuffer = new byte[dataSize];

for(;;){

// accepting a client connection

Socket clientSocket = ss.accept();

DataInputStream inFromClient = new

DataInputStream(clientSocket.getInputStream());

DataOutputStream outToClient = new

DataOutputStream(clientSocket.getOutputStream());

inFromClient.read(receiveBuffer);

outToClient.write(receiveBuffer, 0, receiveBuffer.length);

outToClient.flush();

outToClient.close();

inFromClient.close();

clientSocket.close();

}

}
// end of main method

}
// end of class

Listing No 6
Normal_Client.java
import java.io.*;

import java.net.*;

// Class definition begins

class Normal_Client {

public static void main(String argv[]) throws Exception

{

int dataSize = 0;

int port = 8000;

if(argv.length < 1) {

System.out.println("Usage: [Data Size in bytes]");

System.exit(1);

}

else{

dataSize = Integer.parseInt(argv[0]);

}

// preparing data to be uploaded to the server

byte[] sendBuffer = new byte[dataSize];

for(int j=0; j<sendBuffer.length; j++){

sendBuffer[j] = 'r';

}

// starting to measure round trip time

long t1 = System.currentTimeMillis();

// creating socket connection with server

Socket clientSocket = new Socket("192.168.100.216", port);

DataOutputStream outToServer = new DataOutputStream(clientSocket.getOutputStream());

DataInputStream inFromServer = new DataInputStream(clientSocket.getInputStream());

outToServer.write(sendBuffer, 0, sendBuffer.length); // data upload

outToServer.flush();

// downloading the data

inFromServer.read(sendBuffer);

long t2 = System.currentTimeMillis();

System.out.println("Round Trip Time : " + (t2-t1));

// performing house keeping work

outToServer.close();

inFromServer.close();

clientSocket.close();

}
// end of main method

//***

}
// end of class definition
Listing No 7
Normal_Server.java
import java.io.*;

import java.net.*;

import java.util.*;

// Start of class definition

class Normal_Server {

public static void main(String argv[]) throws Exception

{

int dataSize = 0;

int port = 8000;

if(argv.length < 1) {

System.out.println("Usage: [Data Size in bytes]");

System.exit(1);

}

else{

dataSize = Integer.parseInt(argv[0]);

}

// creating server socket that will listen for client connections

ServerSocket welcomeSocket = new ServerSocket(port);

System.out.println("Server started at port no: " + port);

byte[] receiveBuffer = new byte[dataSize];

for(;;){

// accepting a client connection

Socket clientSocket = welcomeSocket.accept();

DataInputStream inFromClient = new DataInputStream(clientSocket.getInputStream());

DataOutputStream outToClient = new

DataOutputStream(clientSocket.getOutputStream());

inFromClient.read(receiveBuffer);

outToClient.write(receiveBuffer, 0, receiveBuffer.length);

outToClient.flush();

outToClient.close();

inFromClient.close();

clientSocket.close();

}
// end of for loop

}
// end of main method

}
// end of class
Listing No 8
SSLClient.java
import java.io.*;

import java.net.*;

import javax.net.ssl.*;

class SSLClient {

private static final int port = 9000;

private static final String server = "192.168.100.216";

public static void main(String argv[]) throws Exception

{

int dataSize = 0;

int noOfLoops = 0;

if(argv.length < 2) {

System.out.println("Usage: [Data Size in bytes] [No Of Loops]");

System.exit(1);

}

else{

dataSize = Integer.parseInt(argv[0]);

noOfLoops = Integer.parseInt(argv[1]);

}

SSLSocketFactory ssf = (SSLSocketFactory) SSLSocketFactory.getDefault();

// preparing data to be uploaded to the server

byte[] sendBuffer = new byte[dataSize];

for(int j=0; j<sendBuffer.length; j++){

sendBuffer[j] = 'r';

}

long t1 = System.currentTimeMillis();

Socket s = ssf.createSocket(server, port);

long t2 = System.currentTimeMillis();

System.out.println("\nTime to Create Simple Socket Connection = " + (t2-t1) + "\n");

DataOutputStream outToServer = new DataOutputStream(s.getOutputStream());

DataInputStream inFromServer = new DataInputStream(s.getInputStream());

for (int i=0; i<noOfLoops; i++){

long t3 = System.currentTimeMillis();

outToServer.write(sendBuffer, 0, sendBuffer.length); // data upload

outToServer.flush();

// downloading the data

inFromServer.read(sendBuffer);

long t4 = System.currentTimeMillis();

System.out.println("Round Trip Time For Loop No: " + i + " is = " + (t4-t3));

} // end of for loop

// performing house keeping work

outToServer.close();

inFromServer.close();

s.close();

}
// end of main method

//***

}
// end of class definition
Listing No 9
SSLServer.java
import java.io.*;

import java.net.*;

import java.util.*;

import javax.net.ssl.*;

// Start of class definition

public class SSLServer {

private static final int port = 9000;

public static void main (String[] argv) throws Exception {

int dataSize = 0;

int noOfLoops = 0;

if(argv.length < 2) {

System.out.println("Usage: [Data Size in bytes] [No Of Loops]");

System.exit(1);

}

else{

dataSize = Integer.parseInt(argv[0]);

noOfLoops = Integer.parseInt(argv[1]);

}

SSLServerSocketFactory ssf = (SSLServerSocketFactory) SSLServerSocketFactory.getDefault();

ServerSocket ss = ssf.createServerSocket(port);

System.out.println("Server started at port no: " + port);

byte[] receiveBuffer = new byte[dataSize];

for(;;){

// accepting a client connection

Socket clientSocket = ss.accept();

DataInputStream inFromClient = new DataInputStream(clientSocket.getInputStream());

DataOutputStream outToClient = new

DataOutputStream(clientSocket.getOutputStream());

for(int i=0; i<noOfLoops; i++){

inFromClient.read(receiveBuffer);

outToClient.write(receiveBuffer, 0, receiveBuffer.length);

outToClient.flush();

}
//end of while loop

outToClient.close();

inFromClient.close();

clientSocket.close();

}
// end of for loop

}
// end of main method

}
// end of class
Listing No 10
Client.java

import java.io.*;

import java.net.*;

import javax.swing.*;

// Class definition begins

class Client {

public static void main(String argv[]) throws Exception

{

int dataSize = 0;

int noOfLoops = 0;

int port = 8000;

if(argv.length < 2) {

System.out.println("Usage: [Data Size in bytes] [No Of Loops]");

System.exit(1);

}

else{

dataSize = Integer.parseInt(argv[0]);

noOfLoops = Integer.parseInt(argv[1]);

}

// creating socket connection with server

long t1 = System.currentTimeMillis();

Socket clientSocket = new Socket("192.168.100.216", port);

long t2 = System.currentTimeMillis();

System.out.println("\nTime to Create Simple Socket Connection = " + (t2-t1) + "\n");

DataOutputStream outToServer = new DataOutputStream(clientSocket.getOutputStream());

DataInputStream inFromServer = new DataInputStream(clientSocket.getInputStream());

// preparing data to be uploaded to the server

byte[] sendBuffer = new byte[dataSize];

for(int j=0; j<sendBuffer.length; j++){

sendBuffer[j] = 'r';

}

for (int i=0; i<noOfLoops; i++){

long t3 = System.currentTimeMillis();

outToServer.write(sendBuffer, 0, sendBuffer.length); // data upload

outToServer.flush();

// downloading the data

inFromServer.read(sendBuffer);

long t4 = System.currentTimeMillis();

System.out.println("Round Trip Time For Loop No: " + i + " is = " + (t4-t3));

} // end of for loop

// performing house keeping work

outToServer.close();

inFromServer.close();

clientSocket.close();

}
// end of main method

//***

}
// end of class definition
Listing No 11
Server.java
import java.io.*;

import java.net.*;

import java.util.*;

// Start of class definition

class Server {

public static void main(String argv[]) throws Exception

{

int dataSize = 0;

int noOfLoops = 0;

if(argv.length < 2) {

System.out.println("Usage: [Data Size in bytes] [No Of Loops]");

System.exit(1);

}

else{

dataSize = Integer.parseInt(argv[0]);

noOfLoops = Integer.parseInt(argv[1]);

}

// creating server socket that will listen for client connections

ServerSocket welcomeSocket = new ServerSocket(8000);

System.out.println("Server started at port no: " + port);

byte[] receiveBuffer = new byte[dataSize];

for(;;){

// accepting a client connection

Socket clientSocket = welcomeSocket.accept();

DataInputStream inFromClient = new DataInputStream(clientSocket.getInputStream());

DataOutputStream outToClient = new

DataOutputStream(clientSocket.getOutputStream());

for(int i=0; i<noOfLoops; i++){

inFromClient.read(receiveBuffer);

outToClient.write(receiveBuffer, 0, receiveBuffer.length);

outToClient.flush();

//System.out.println("Server received and echoed back i= " + i);

}
//end of while loop

outToClient.close();

inFromClient.close();

clientSocket.close();

}
// end of for loop

}
// end of main method

}
// end of class

References

[1]
WLAN Association, “Introduction to Wireless LANs”, WLANA Resource Center, 1999, http://www.wlana.org/learn/intro.pdf
[2]
John Vollbrecht, David Rago, and Robert Moskowitz. “Wireless

LAN Access Control and Authentication”, White Papers at Interlink

Networks Resource Library, 2001. http://www.interlinknetworks.com/images/resource/WLAN_Access_Control.pdf
[3]
Jean-Paul Saindon, “Techniques to resolve 802.11 and wireless LAN technology in outdoor environments”, News Article at SecurityMagazine.com, Aug 08 2002.

http://www.securitymagazine.com/CDA/ArticleInformation/features/BNP__Features__Item/0,5411,77206,00.html
[4]
WLAN Association, “Wireless Networking Standards and Organizations”, WLANA Resource Center, April 17 2002

http://www.wlana.org/pdf/wlan_standards_orgs.pdf
[5]
Interlink Networks, “Wireless LAN Security using Interlink Networks RAD Series AAA Server and Cisco EAP-LEAP”, Application Notes at Interlink Networks Resource Library, 2002

http://interlinknetworks.com/images/resource/wireless_lan_security.pdf
[6]
Jesse R.Walker, “Unsafe at any key size; An analysis of the WEP encapsulation”, 802.11 Security Papers at NetSys.com, Oct 27 2000

http://www.netsys.com/library/papers/walker-2000-10-27.pdf
[7]
Nikita Borisov, Ian Goldberg, and David Wagner “Security of WEP Algorithm”, ISAAC, Computer Science Department, University Of California Berkely

http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html
[8]
Mathew S Gust, “802.11 Wireless Networks – The Definitive Guide”, O’Reilly Publishers, April 2002

[9]
Interlink Networks, “Introduction to 802.1X for Wireless Local Area Networks”, White Papers at Interlink Networks Resource Library, 2002.

http://www.interlinknetworks.com/images/resource/802_1X_for_Wireless_LAN.pdf
[10]
Arunesh Mishra, William A. Arbaugh, “An Initial Security Analysis of the IEEE 802.1x Standard”, Department Of Computer Science, University Of Maryland, Feb 06 2002.

http://www.cs.umd.edu/~waa/1x.pdf
[11]
Brian Mansfield, “WLAN & 802.11 SECURITY”, Internet Developers Group, Netscape Communications, June 18 2002, http://www.inetdevgrp.org/20020618/WLANSecurity.pdf
[12]
Philip Cox, “Robust Security Network: The future of wireless security”, System Experts Corporation,

http://www.systemexperts.com/win2k/SecureWorldExpo-RSN.ppt
[13]
Pierre Trudeau, “Building Secure Wireless Local Area Networks”, White Papers at Colubris.com, 2001

http://download.colubris.com/library/whitepapers/WP-010712-EN-01-00.pdf
[14]
HOW TO: Configure Windows 2000 Professional to Windows 2000 Professional VPN Connections. Microsoft Knowledge Base.

http://support.microsoft.com/?kbid=257333
[15]
Comparison of VPN protocols; IPSec, PPTP and L2TP

http://ece.gmu.edu/courses/ECE543/reportsF01/arveal.pdf
[16]
HOW TO: Install and Configure a Virtual Private Network Server in Windows 2000. Microsoft Knowledge Base

http://support.microsoft.com/default.aspx?scid=kb;en-us;308208
[17]
Step-by-Step Guide for Setting Up a PPTP-based Site-to-Site VPN Connection in a Test Lab

http://download.microsoft.com/download/f/e/a/feadfc0c-924e-4f3a-bb2e-e581e2516df7/Site_to_siteVPN.doc
[18]
Definition of VPN on XP

http://www.lpt.com/windowsnetworking/regusers/xpvpnsrv.htm
[19]
Performance Measurement Tools Taxonomy

http://www.caida.org/tools/taxonomy/performance.xml
[20]
MPPE

http://www.networksorcery.com/enp/protocol/mppe.htm
[21]
Introduction to SSL

http://developer.netscape.com/docs/manuals/security/sslin/contents.htm
[22]
Professional Java Security

By Jess Garms and Daniel Somerfield, 2001 Wrox Publications

[23]
Web Hacking, Attacks and Defense

By Stuart Mclure, Saumil Shah, Shreeraj Shah, 2003 Addison Wesley

[24]
Winpcap

http://winpcap.polito.it/
[25]
Snort

http://www.snort.org
Mobile A

Mobile B

Mobile C

Acess Point

� A hidden node problem occurs when a wireless node cannot hear one or more of the other nodes therefore media access protocol cannot function properly. Thus multiple nodes will attempt to transmit their data over the shared medium simultaneously causing signal interference with one another. [3]

� Figure 1.3 is courtesy of � HYPERLINK "http://www.rnvs.informatik.tu-chemnitz.de" ��� HYPERLINK "http://rnvs.informatik.tu-chemnitz.de" ��http://rnvs.informatik.tu-chemnitz.de��

� Figures 2.1, 2.2 are courtesy of Katholieke Universiteit Leuven, Belgium

 � HYPERLINK "http://www.esat.kuleuven.ac.be/~h239/reports/2001/wlan/security.php" ��http://www.esat.kuleuven.ac.be/~h239/reports/2001/wlan/security.php�

� Figure 2.3 is courtesy of Computer Science Department, National Chiao-Tung University, Taiwan

 � HYPERLINK "http://netlab18.cis.nctu.edu.tw/html/802.11/slides/chap-06.pdf" ��http://netlab18.cis.nctu.edu.tw/html/802.11/slides/chap-06.pdf�

� Figure 2.5 is courtesy of Book “802.11 Wireless Networks – The Definitive Guide” by Mathew S Gast [8]

� Figures 2.6, 2.7 are courtesy of Research paper by Mishra and Arbaugh “An Initial Security Analysis of the

 IEEE 802.1x Standard”. http://www.cs.umd.edu/~waa/1x.pdf

� Figure 2.9 is courtesy of Research paper by Mishra and Arbaugh “An Initial Security Analysis of

 the IEEE 802.1x Standard”. http://www.cs.umd.edu/~waa/1x.pdf

� Figures 5.1 and 5.2 are courtesy of University of Illinois At Urbana Champaign

http://uiuc.edu

PAGE
115

_1116799638.vsd
actorReference�

�

Application�

Presentation�

Session�

Transport�

Network�

Data
 Link�

Physical�

TCP�

IP�

Logical Link Layer (LLC)�

Media Access Layer (MAC) -
Power, Security etc�

FH, IR, DSS,CCK(b), OFDM(a)�

802.11�

NOS Network OS�

_1126956763.xls
Chart1

		2312		2312		2312		2312

		1500		1500		1500		1500

		1000		1000		1000		1000

		256		256		256		256

Data Size = 22 Mb

Data Size = 11 Mb

Data Size = 5 Mb

Data Size = 1 Mb

FTS (Bytes)

Performance (Mb/s)

Performance vs FTS (Upload Mode)

3.12

3.01

2.91

2.8

2.85

2.85

2.66

2.67

2.88

2.79

2.67

2.61

1.8

1.79

1.76

1.73

Sheet1

		2312		3.12		3.01		2.91		2.8

		1500		2.85		2.85		2.66		2.67

		1000		2.88		2.79		2.67		2.61

		256		1.8		1.79		1.76		1.73

Sheet2

		

Sheet3

		

_1126956841.xls
Chart1

		2312		2312		2312		2312

		1500		1500		1500		1500

		1000		1000		1000		1000

		256		256		256		256

Data Size = 22 Mb

Data Size = 11 Mb

Data Size = 5 Mb

Data Size = 1 Mb

FTS (Bytes)

Performance (Mb/s)

Performance vs FTS (Update Mode)

3.2

3.1

3.08

2.98

2.86

2.82

2.76

2.76

2.88

2.86

2.78

2.74

1.81

1.81

1.79

1.77

Sheet1

		2312		3.2		3.1		3.08		2.98

		1500		2.86		2.82		2.76		2.76

		1000		2.88		2.86		2.78		2.74

		256		1.81		1.81		1.79		1.77

Sheet2

		

Sheet3

		

_1126966511.xls
Chart1

		22		22		22

		11		11		11

		8		8		8

		5		5		5

		2		2		2

		1		1		1

		0.5		0.5		0.5

		0.2		0.2		0.2

Download Mode

Upload Mode

Update Mode

Data Size (Mb)

Performance (Mb/s)

Performance vs Data Size (WEP Enabled, FTS = RTS = 2312 Bytes)

3.13

3.13

3.13

3.19

2.99

3.09

3.09

3.2

3.14

3.15

2.84

2.99

3.19

2.64

2.89

3.15

2.77

2.94

3.06

3.06

3.05

2.85

3.57

3.17

Sheet1

		22		3.13		3.13		3.13

		11		3.19		2.99		3.09

		8		3.09		3.2		3.14

		5		3.15		2.84		2.99

		2		3.19		2.64		2.89

		1		3.15		2.77		2.94

		0.5		3.06		3.06		3.05

		0.2		2.85		3.57		3.17

Sheet2

		

Sheet3

		

_1126966519.xls
Chart1

		22		22		22

		11		11		11

		8		8		8

		5		5		5

		2		2		2

		1		1		1

		0.5		0.5		0.5

		0.2		0.2		0.2

Download Mode

Upload Mode

Update Mode

Data Size (Mb)

Performance (Mb/s)

Performance vs Data Size (FTS = 2312)

3.13

3.12

3.2

3.19

3.01

3.1

3.07

3.19

3.14

3.21

2.91

3.08

3.19

2.68

3.92

3.19

2.8

2.98

3.13

3.33

3.22

2.89

3.64

3.22

Sheet1

		22		3.13		3.12		3.2

		11		3.19		3.01		3.1

		8		3.07		3.19		3.14

		5		3.21		2.91		3.08

		2		3.19		2.68		3.92

		1		3.19		2.8		2.98

		0.5		3.13		3.33		3.22

		0.2		2.89		3.64		3.22

Sheet2

		

Sheet3

		

_1127041053.xls
Chart1

		22		22		22

		11		11		11

		8		8		8

		5		5		5

		2		2		2

		1		1		1

		0.5		0.5		0.5

		0.2		0.2		0.2

Download Mode

Upload Mode

Update Mode

Data Size (Mb)

Performance (Mb/s)

Performance vs Data Size (FTS = 1500)

2.86

2.85

2.86

2.89

2.75

2.82

2.82

2.92

2.87

2.87

2.66

2.76

2.87

2.5

2.68

2.84

2.67

2.76

2.84

2.86

2.85

2.63

3.23

2.9

Sheet1

		22		2.86		2.85		2.86

		11		2.89		2.75		2.82

		8		2.82		2.92		2.87

		5		2.87		2.66		2.76

		2		2.87		2.5		2.68

		1		2.84		2.67		2.76

		0.5		2.84		2.86		2.85

		0.2		2.63		3.23		2.9

Sheet2

		

Sheet3

		

_1126961492.xls
Chart1

		22		22		22

		11		11		11

		8		8		8

		5		5		5

		2		2		2

		1		1		1

		0.5		0.5		0.5

		0.2		0.2		0.2

Download Mode

Upload Mode

Update Mode

Data Size (Mb)

Performance (Mb/s)

Performance vs Data Size (FTS = 2312)

3.13

3.12

3.2

3.19

3.01

3.1

3.07

3.19

3.14

3.21

2.91

3.08

3.19

2.68

3.92

3.19

2.8

2.98

3.13

3.33

3.22

2.89

3.64

3.22

Sheet1

		22		3.13		3.12		3.2

		11		3.19		3.01		3.1

		8		3.07		3.19		3.14

		5		3.21		2.91		3.08

		2		3.19		2.68		3.92

		1		3.19		2.8		2.98

		0.5		3.13		3.33		3.22

		0.2		2.89		3.64		3.22

Sheet2

		

Sheet3

		

_1126956840.xls
Chart1

		2312		2312		2312		2312

		1500		1500		1500		1500

		1000		1000		1000		1000

		256		256		256		256

Data Size = 22 Mb

Data Size = 11 Mb

Data Size = 5 Mb

Data Size = 1 Mb

FTS (Bytes)

Performance (Mb/s)

Performance vs FTS (Download Mode)

3.13

3.19

3.19

3.19

2.86

2.89

2.87

2.84

2.88

2.92

2.89

2.89

1.83

1.83

1.82

1.81

Sheet1

		2312		3.13		3.19		3.19		3.19

		1500		2.86		2.89		2.87		2.84

		1000		2.88		2.92		2.89		2.89

		256		1.83		1.83		1.82		1.81

Sheet2

		

Sheet3

		

_1117086829.xls
Chart1

		6.065		5.249		5.939		4.264		4.44		5.128

		6.112		5.23		5.92		5.22		3.64		5.08

		6.061		5		6		5		4		5

		6.056		5		6		5		3		5

		5.979		5.25		5.98		5.2		4.98		4.28

		6.159		5.212		5.979		4.391		4.35		5.102

		6.102		5.215		6.038		5.229		5.249		5.118

		6.084		5.212		6.061		5.249		4.908		4.997

		6.107		5.215		6.065		5.225		5.42		5.031

		6.116		4.264		6.047		5.205		5.376		5.086

TCP-5 feet

UDP-5 feet

TCP-15 feet

UDP-15 feet

TCP-50 feet

UDP-50 feet

Iteration

Throughput

Range Test (Hybrid Model)

Sheet1

		6.065		6.112		6.061		6.056		5.979		6.159		6.102		6.084		6.107		6.116

		5.249		5.23		5		5		5.25		5.212		5.215		5.212		5.215		4.264

		5.939		5.92		6		6		5.98		5.979		6.038		6.061		6.065		6.047

		4.264		5.22		5		5		5.2		4.391		5.229		5.249		5.225		5.205

		4.44		3.64		4		3		4.98		4.35		5.249		4.908		5.42		5.376

		5.128		5.08		5		5		4.28		5.102		5.118		4.997		5.031		5.086

Sheet1

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

TCP-5 feet

UDP-5 feet

TCP-15 feet

UDP-15 feet

TCP-50 feet

UDP-50 feet

Iteration

Throughput

Range Test (Hybrid Model)

Sheet2

		

Sheet3

		

_1123403659

_1123417294

_1123768885

_1117087048.xls
Chart2

		3.019		3.003		3.152		3.033		2.993		2.463

		2.996		3.075		3.223		3.057		2.961		2.561

		3.089		2.996		3.201		2.97		2.944		2.666

		3.162		3.015		3.14		3.078		2.945		2.446

		2.985		3.025		3.11		3.035		2.656		2.626

		3.075		3.037		3.157		3.059		2.968		2.122

		3.153		3.082		3.175		3.053		3.036		2.856

		3.125		3.076		3.118		3.015		2.948		2.319

		3.077		3.066		3.15		3.082		2.975		2.878

		2.963		3.067		3.162		3.085		2.994		2.854

TCP- 5 feet

UDP-5 feet

TCP- 15 feet

UDP-15feet

TCP-50feet

UDP-50feet

Iterations

Throughput

Range Test (Wireless Model)

Chart1

		3.019		3.003		3.152		3.033		2.993		2.463

		2.996		3.075		3.223		3.057		2.961		2.561

		3.089		2.996		3.201		2.97		2.944		2.666

		3.162		3.015		3.14		3.078		2.945		2.446

		2.985		3.025		3.11		3.035		2.656		2.626

		3.075		3.037		3.157		3.059		2.968		2.122

		3.153		3.082		3.175		3.053		3.036		2.856

		3.125		3.076		3.118		3.015		2.948		2.319

		3.077		3.066		3.15		3.082		2.975		2.878

		2.963		3.067		3.162		3.085		2.994		2.854

Iterations

Throughput

Range Testing - Wireless Model

Sheet1

		3.019		2.996		3.089		3.162		2.985		3.075		3.153		3.125		3.077		2.963

		3.003		3.075		2.996		3.015		3.025		3.037		3.082		3.076		3.066		3.067

		3.152		3.223		3.201		3.14		3.11		3.157		3.175		3.118		3.15		3.162

		3.033		3.057		2.97		3.078		3.035		3.059		3.053		3.015		3.082		3.085

		2.993		2.961		2.944		2.945		2.656		2.968		3.036		2.948		2.975		2.994

		2.463		2.561		2.666		2.446		2.626		2.122		2.856		2.319		2.878		2.854

Sheet1

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

TCP- 5 feet

UDP-5 feet

TCP- 15 feet

UDP-15feet

TCP-50feet

UDP-50feet

Iterations

Throughput

Range Test (Wireless Model)

Sheet2

		

Sheet3

		

_1116800365.vsd
actorReference�

�

�

Point Coordination Function(PCF)�

 Distribution Coordination Function
(DCF)�

Required For Contention Free Services�

MAC Extent�

Used for Contention Services and basis for PCP�

_1117086727.xls
Chart1

		2.815		2.993

		2.716		2.961

		2.789		2.944

		2.675		2.945

		2.656		2.656

		2.828		2.968

		2.891		3.036

		2.948		2.948

		2.693		2.975

		2.635		2.994

Power 30mW

Power 100mW

Iterations

Throughput

Power Testing

Sheet1

		2.815		2.716		2.789		2.675		2.656		2.828		2.891		2.948		2.693		2.635

		2.993		2.961		2.944		2.945		2.656		2.968		3.036		2.948		2.975		2.994

																																		2.994

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

Power 30mW

Power 100mW

Iterations

Throughput

Power Testing

Sheet2

		

Sheet3

		

_1110039145.bin

_1115763231.vsd
Laptop computer�

�

Mobile-A�

Mobile-B�

_1109529323.xls
Chart1

		22		22		22

		11		11		11

		8		8		8

		5		5		5

		2		2		2

		1		1		1

		0.5		0.5		0.5

		0.2		0.2		0.2

		0.1		0.1		0.1

Download Mode

Upload Mode

Update Mode

Data Size (Mb)

Performance (Mb/s)

Performance vs Data Size (FTS = 256)

1.83

1.8

1.81

1.83

1.79

1.81

1.79

1.85

1.82

1.82

1.76

1.79

1.82

1.7

1.76

1.81

1.73

1.77

1.79

1.81

1.79

1.72

1.9

1.8

1.67

1.96

1.8

Sheet1

		22		1.83		1.8		1.81

		11		1.83		1.79		1.81

		8		1.79		1.85		1.82

		5		1.82		1.76		1.79

		2		1.82		1.7		1.76

		1		1.81		1.73		1.77

		0.5		1.79		1.81		1.79

		0.2		1.72		1.9		1.8

		0.1		1.67		1.96		1.8

Sheet2

		

Sheet3

		

_1109536747.xls
Chart1

		22		22		22

		11		11		11

		8		8		8

		5		5		5

		2		2		2

		1		1		1

		0.5		0.5		0.5

		0.2		0.2		0.2

Download Mode

Upload Mode

Update Mode

Data Size (Mb)

Performance (Mb/s)

Performance vs Data Size (WEP Enabled, FTS = RTS = 2312 Bytes)

3.13

3.13

3.13

3.19

2.99

3.09

3.09

3.2

3.14

3.15

2.84

2.99

3.19

2.64

2.89

3.15

2.77

2.94

3.06

3.06

3.05

2.85

3.57

3.17

Sheet1

		22		3.13		3.13		3.13

		11		3.19		2.99		3.09

		8		3.09		3.2		3.14

		5		3.15		2.84		2.99

		2		3.19		2.64		2.89

		1		3.15		2.77		2.94

		0.5		3.06		3.06		3.05

		0.2		2.85		3.57		3.17

Sheet2

		

Sheet3

		

_1109545870.xls
Chart1

		22		22		22

		11		11		11

		8		8		8

		5		5		5

		2		2		2

		1		1		1

		0.5		0.5		0.5

		0.2		0.2		0.2

Download Mode

Upload Mode

Update Mode

Data Size (Mb)

Performance (Mb/s)

Performance vs Data Size (WEP Enabled, FTS=1000, RTS=2312)

2.83

2.8

2.81

2.86

2.69

2.78

2.77

2.86

2.81

2.82

2.6

2.7

2.85

2.45

2.64

2.84

2.55

2.69

2.84

2.65

2.74

2.63

3.07

2.85

Sheet1

		22		2.83		2.8		2.81

		11		2.86		2.69		2.78

		8		2.77		2.86		2.81

		5		2.82		2.6		2.7

		2		2.85		2.45		2.64

		1		2.84		2.55		2.69

		0.5		2.84		2.65		2.74

		0.2		2.63		3.07		2.85

Sheet2

		

Sheet3

		

_1109553788.xls
Chart1

		22		22		22

		11		11		11

		8		8		8

		5		5		5

		2		2		2

		1		1		1

		0.5		0.5		0.5

		0.2		0.2		0.2

Download Mode

Upload Mode

Update Mode

Data Size (Mb)

Performance (Mb/s)

Performance vs Data Size (WEP Enabled, FTS=1, RTS=2312)

1.8

1.76

1.78

1.8

1.74

1.77

1.76

1.81

1.78

1.79

1.73

1.76

1.79

1.67

1.73

1.78

1.7

1.74

1.76

1.75

1.75

1.68

1.83

1.75

Sheet1

		22		1.8		1.76		1.78

		11		1.8		1.74		1.77

		8		1.76		1.81		1.78

		5		1.79		1.73		1.76

		2		1.79		1.67		1.73

		1		1.78		1.7		1.74

		0.5		1.76		1.75		1.75

		0.2		1.68		1.83		1.75

Sheet2

		

Sheet3

		

_1109541109.xls
Chart1

		22		22		22

		11		11		11

		8		8		8

		5		5		5

		2		2		2

		1		1		1

		0.5		0.5		0.5

		0.2		0.2		0.2

Download Mode

Upload Mode

Update Mode

Data Size (Mb)

Performance (Mb/s)

Performance vs Data Size (WEP Enabled, FTS=1500, RTS=2312)

2.79

2.77

2.78

2.82

2.67

2.74

2.74

2.81

2.78

2.79

2.56

2.67

2.81

2.43

2.61

2.83

2.52

2.67

2.77

2.66

2.72

2.63

3.03

2.81

Sheet1

		22		2.79		2.77		2.78

		11		2.82		2.67		2.74

		8		2.74		2.81		2.78

		5		2.79		2.56		2.67

		2		2.81		2.43		2.61

		1		2.83		2.52		2.67

		0.5		2.77		2.66		2.72

		0.2		2.63		3.03		2.81

Sheet2

		

Sheet3

		

_1109529325.xls
Chart1

		22		22		22

		11		11		11

		8		8		8

		5		5		5

		2		2		2

		1		1		1

		0.5		0.5		0.5

		0.2		0.2		0.2

Download Mode

Upload Mode

Update Mode

Data Size (Mb)

Performance (Mb/s)

Performance vs Data Size (FTS = 1000)

2.88

2.88

2.88

2.92

2.79

2.86

2.83

2.93

2.88

2.89

2.67

2.78

2.9

2.5

2.69

2.86

2.61

2.74

2.84

2.79

2.82

2.7

3.17

2.92

Sheet1

		22		2.88		2.88		2.88

		11		2.92		2.79		2.86

		8		2.83		2.93		2.88

		5		2.89		2.67		2.78

		2		2.9		2.5		2.69

		1		2.86		2.61		2.74

		0.5		2.84		2.79		2.82

		0.2		2.7		3.17		2.92

Sheet2

		

Sheet3

		

_1099921101

